8-900-374-94-44
[email protected]
Slide Image
Меню

Гальваническая развязка что такое – » :

Содержание

Гальваническая развязка - применение и принцип действия

Содержание:

  1. Принцип действия
  2. Трансформаторная (индуктивная) развязка
  3. Гальваническая развязка оптоэлектронного типа
  4. Принцип действия емкостной развязки
  5. Работа электромеханической развязки
  6. Видео

В электронике и электротехнике используется большое количество схем, в которых требуется изолировать или отделить высокое силовое напряжение от низкого напряжения управляющих цепей. За счет этого создается своеобразная защита низковольтных устройств от влияния высокого напряжения. То есть, в таких цепях уже нет течения обычного электрического тока. В таких случаях, при отсутствии тока, между устройствами возникает большое омическое сопротивление, вызывающее разрыв цепи. Данную проблему успешно решает гальваническая развязка, с помощью которой убирается гальваническая связь между устройствами.

Таким образом, энергия или сигналы будут передаваться от одной цепи к другой при отсутствии между ними какого-либо электрического контакта. Применение гальванических развязок дает возможность бесконтактного управления, обеспечивает надежную защиту людей и оборудования от поражения электротоком.


Принцип действия

Гальваническая развязка в соответствии со своей функцией известна также под понятием гальванической изоляции. Данные системы обеспечивают электрическую изоляцию конкретной цепи по отношению к другим видам цепей, находящихся рядом.

Благодаря своим особенностям, гальваническая развязка обеспечивает обмен сигналами или энергией между цепями, исключая при этом непосредственный электрический контакт. С ее помощью образуется независимая сигнальная цепь за счет формирования независимого контура тока сигнальной цепи по отношению к токовым контурам других цепей.

Гальваническая изоляция используется во время измерений в силовых цепях и в цепях обратной связи. Данное техническое решение обеспечивает также электромагнитную совместимость, усиливает защиту от помех, повышает точность измерений. Используемый блок гальванической развязки на входе и выходе каждого устройства способствует улучшению их совместимости с другими приборами в условиях сложной электромагнитной обстановки.

Для того чтобы лучше представить себе, что такое гальваническая развязка, можно рассмотреть ее действие на примере стандартного промышленного электродвигателя. На производстве в большинстве случаев используется значение питающего напряжения, значительно превышающее 220 вольт и представляющее серьезную опасность для обслуживающего персонала.

В связи с этим, подача тока на обмотки и включение двигателя осуществляется с применением специальных устройств, обеспечивающих коммутацию силовых цепей. В свою очередь, коммутаторы также управляются, чаще всего кнопками включение и выключения. Именно на этом участке и требуется развязка, защищающая оператора от воздействия опасного напряжения. Оно не попадает на пульт управления, благодаря механическому взаимодействию конструктивных элементов пускателя с магнитным полем.

В настоящее время данные системы используются в различных вариантах технических решений: индуктивные, оптические, емкостные и электромеханические.


Трансформаторная (индуктивная) развязка

Для того чтобы построить индуктивную развязку, следует использовать магнитоиндукционные устройства – трансформаторы. Его конструкция может быть с сердечником или без сердечника.

Оборудование цепей гальваноразвязкой индуктивного типа осуществляется с помощью трансформаторов, у которых коэффициент трансформации составляет единицу. К источнику сигнала подключается первичная катушка, а вторичная соединяется с приемником. На этом принципе гальванические развязки трансформаторного типа служат основой для создания магнитомодуляционных устройств.

Выходное напряжение, возникающее во вторичной обмотке, напрямую связано с напряжением на входе трансформаторного устройства. В связи с этим, индуктивная развязка имеет серьезные недостатки, почему и ограничивается ее применение:

  • Невозможно изготовить компактное устройство из-за существенных габаритных размеров трансформатора.
  • Частота пропускания ограничивается частотной модуляцией самой развязки.
  • Помехи, возникающие во входном сигнале, снижают качество сигнала на выходе.
  • Подобная трансформаторная гальваническая развязка может нормально работать только при наличии переменного напряжения.

Гальваническая развязка оптоэлектронного типа

С развитием высоких технологий, использующих полупроводниковые элементы, все более широкое распространение получают БГР – блоки гальванической изоляции на основе оптоэлектронных узлов. Их основой служат оптроны, известные среди электротехников в качестве оптопар, выполненных на основе диодов, транзисторов, тиристоров и других элементов, обладающих повышенной светочувствительностью.

Общая схема оптической части, связывающая источник данных с приемником, использует в качестве сигнала нейтральные фотоны. Благодаря этому свойству, выполняется развязка цепи на входе и выходе, а также ее согласование с входными и выходными сопротивлениями.

Когда используется оптоэлектронная схема, приемник совершенно не влияет на источник сигнала, поэтому сигналы могут модулироваться в широком частотном диапазоне. Данные устройства обладают компактными размерами, поэтому они часто используются в микроэлектронике.

В конструкцию оптической пары входит световой излучатель, проводящая среда для светового потока, а также приемник, преобразующий свет в электрические сигналы. Сопротивление на входе и выходе оптрона очень большое, прядка нескольких миллионов Ом.

Вначале входной сигнал попадает на светодиод, далее в виде света он по световоду попадает на фототранзистор. На выходе устройства данная схема создает перепад или импульс выходного электрического тока. В результате цепи, связанные с двух сторон со светодиодом и фототранзистором, оказываются изолированными между собой.


Принцип действия емкостной развязки

Нередко возникает вопрос, зачем нужны различные виды развязок, в том числе и емкостная развязка. Эта схема представляет собой систему, в которой между цепями отсутствуют связи через ток, землю и другие элементы.

В этом случае передача данных электрических цепей осуществляется с помощью переменного электрического поля. Изоляция цепей происходит за счет диэлектрика, расположенного между конденсаторными пластинами. Качество развязывающего конденсатора определяется свойствами диэлектрика, размером обкладок и расстоянием между ними. Данный вид изоляции обладает повышенной энергетической эффективностью, устройства на его основе отличаются незначительными размерами, способны передавать электроэнергию и не реагируют на внешние электромагнитные поля.

Нормальная работа устройств обеспечивается разделением частоты сигнала и помех. Таким образом, емкость оказывает рабочему сигналу совсем небольшое сопротивление, а для помех создает преграду.


Работа электромеханической развязки

Помимо уже перечисленных, существует электромеханический вариант развязки. Вопрос для чего он нужен, практически не возникает, поскольку устройства на этой основе широко применяются в электротехнике.

Основой таких приборов служит реле, соединяющее электрические цепи в результате каких-либо изменений входных данных. В итоге они оказываются развязанными, а сама система получила название релейной.

Наиболее ярким примером является схема электромагнитного реле. Эти приборы нужны для защиты электроустановок и в различных автоматических системах. Они разделяются на реле постоянного и переменного тока. Основным элементом считается якорь, которые под действием электромагнита и пружины осуществляет замыкание и размыкание контактов.


electric-220.ru

Гальваническая развязка. Виды и работа. Особенности

Принцип изоляции электрической цепи от других цепей в одном устройстве называется гальваническая развязка или изоляция. С помощью такой изоляции осуществляется передача сигнала или энергии от одной электрической цепи к другой, без прямого контакта между цепями.

Гальваническая развязка дает возможность обеспечения независимости цепи сигналов, так как образуется независимый токовый контур сигнальной цепи от других контуров, в цепях обратной связи и при измерениях. Для электромагнитной совместимости гальваническая развязка является оптимальным решением, так как увеличивается точность измерений, повышается защита от помех.

Принцип действия

Чтобы понять принцип работы гальванической развязки, рассмотрим, как это реализуется в конструкции

трансформатора.

Первичная обмотка электрически изолирована от вторичной обмотки. Между ними нет контакта, и не возникает никакого тока, если, конечно, не считать аварийный режим с пробоем изоляции или виткового замыкания. Однако разность потенциалов в катушках может быть значительной.

В результате, если даже вторичная обмотка будет связана электрически с корпусом устройства, а значит и с землей, то все равно на корпусе не возникнет паразитных токов, которые были бы опасны для работников и оборудования.

Виды

Такая изоляция электрических цепей обеспечивается различными методами с применением всевозможных электронных элементов и деталей. Например, трансформаторы, конденсаторы и оптроны способны осуществлять передачу электрических сигналов без непосредственного контакта. Участки цепи взаимодействуют через световой поток, магнитное или электростатическое поле. Рассмотрим основные виды гальванической изоляции.

Индуктивная развязка

Для построения трансформаторной (индуктивной) развязки необходимо применить магнитоиндукционный элемент, который называется трансформатором

. Он может быть как с сердечником, так и без него.

При развязке трансформаторного вида применяют трансформаторы с коэффициентом трансформации, равным единице. Первичная катушка трансформатора соединяется с источником сигнала, вторичная – с приемником. Для развязки цепей по такой схеме можно применять магнитомодуляционные устройства на основе трансформаторов.

При этом напряжение на выходе, которое имеется на вторичной обмотке трансформатора, будет напрямую зависеть от напряжения на входе устройства. При таком методе индуктивной развязки существует ряд серьезных недостатков:

  • Значительные габаритные размеры, не позволяющие изготовить компактное устройство.
  • Частотная модуляция гальванической развязки ограничивает частоту пропускания.
  • На качество выходного сигнала влияют помехи несущего входного сигнала.
  • Действие трансформаторной развязки возможно только при переменном напряжении.
Оптоэлектронная развязка

Развитие электронных и информационных технологий полупроводниковых элементов в настоящее время повышает возможности проектирования развязки с помощью оптоэлектронных узлов. Основу таких узлов развязки составляют оптроны (оптопары), которые выполнены на основе

тиристоров, диодов, транзисторов и других компонентов, чувствительных к свету.

В оптической части схемы, которая связывает приемник и источник данных, носителем сигнала выступают фотоны. Нейтральность фотонов дает возможность выполнить электрическую развязку выходной и входной цепи, а также согласовать цепи с различными сопротивлениями на выходе и входе.

В оптоэлектронной развязке приемник не оказывает влияние на источник сигнала, поэтому есть возможность модулирования сигналов широкого диапазона частот. Важным преимуществом оптических пар является их компактность, которая позволяет их применение в микроэлектронике.

Оптическая пара состоит из излучателя света, среды, проводящей световой поток, и приемника света, который преобразует его в сигнал электрического тока. Сопротивление выхода и входа в оптроне очень велико, и может достигать нескольких миллионов Ом.

Принцип действия оптрона довольно простой. От

светодиода выходит световой поток и направляется на фототранзистор, который воспринимает его и осуществляет дальнейшую работу в соответствии с этим световым сигналом.

Более подробно работа оптопары выглядит следующим образом. Входной сигнал поступает на светодиод, который излучает свет по световоду. Далее световой поток воспринимается фототранзистором, на выходе которого создается перепад или импульс электрического тока выхода. В результате выполняется гальваническая развязка цепей, которые связаны с одной стороны со светодиодом, а с другой – с фототранзистором.

Диодная оптопара

В этой паре источником светового потока является светодиод. Такая пара может применяться вместо ключа и работать с сигналами частотой в несколько десятков МГц.

При необходимости передачи сигнала источник подает на светодиод питание, в результате чего излучается свет, попадающий на фотодиод. Под действием света фотодиод открывается и пропускает через себя ток.

Приемник воспринимает появление тока как рабочий сигнал. Недостатком диодных оптопар является невозможность управления повышенными токами без вспомогательных элементов. Также к недостаткам можно отнести их малый КПД.

Транзисторная оптопара

Такие оптические пары имеют повышенную чувствительность, в отличие от диодных, а значит, являются более экономичными. Но их скорость реакции и наибольшая частота соединения оказывается меньше. Транзисторные оптические пары обладают незначительным сопротивлением в открытом виде, и большим в закрытом состоянии.

 

Управляющие токи для транзисторной пары выше выходного тока диодной пары. Транзисторные оптроны можно применять разными способами:

  • Без вывода базы.
  • С выводом базы.

Без вывода базы коллекторный ток будет напрямую зависеть от тока светодиода, но транзистор будет иметь длительное время отклика, так как цепь базы всегда открыта.

В случае с выводом базы есть возможность увеличить скорость реакции подключением вспомогательного сопротивления между эмиттером и базой транзистора. Тогда возникает эффект, при котором транзистор не переходит в состояние проводимости до тех пор, пока диодный ток не достигнет значения, необходимого для падения напряжения на резисторе.

Такая гальваническая развязка (оптоэлектронная) обладает некоторыми преимуществами:

  • Широкий интервал напряжений развязки (до 0,5 кВ). Это играет большую роль в проектировании систем ввода информации.
  • Гальваническая развязка может функционировать с высокой частотой, достигающей нескольких десятков МГц.
  • Компоненты схемы такой развязки имеют незначительные габаритные размеры.

При отсутствии гальванической изоляции наибольший ток, который проходит между цепями, может ограничиться только малыми электрическими сопротивлениями. В результате это приводит к возникновению выравнивающих токов, которые причиняют вред элементам электрической цепи и работника, которые случайно прикасаются к незащищенному электрооборудованию.

Похожие темы:

 

electrosam.ru

Зачем нужна гальваническая развязка?

Очень часто в электрических устройствах возникает необходимость исключить электрическую связь между высоким силовым напряжением и низким напряжением цепей управления. Иными словами, необходимо выполнить защиту низковольтных устройств от напряжения силовых цепей в сотни, а то и тысячи вольт. Технически это означает, что в данной системе или электрическом устройстве необходимо исключить протекание тока по общим цепям. Отсутствие тока означает наличие большого омического сопротивления между общими проводами двух устройств, что равнозначно разрыву цепи. Эту задачу решает гальваническая развязка – устройство, исключающее гальваническую связь между электрическими устройствами.

Представим себе обычный промышленный электрический двигатель. В условиях производства большая часть двигателей имеет рабочее питающее напряжение выше 200В, что опасно для персонала. Поэтому подача питающего напряжения на обмотки, т.е. включение двигателя, производится при помощи дополнительных устройств, коммутирующих силовые цепи. С другой стороны, коммутаторы также должны управляться, например, кнопкой, и при этом гальваническая развязка защищает оператора от поражения опасным напряжением.

Сами по себе коммутирующие устройства, например, контакторы и пускатели, являются устройствами, в которых конструкция исключает электрический контакт между входом (контакты катушки электромагнита) и выходом (силовая контактная группа пускателя). Связь между ними осуществляется только через механическое взаимодействие магнитного поля с конструктивными элементами пускателя, благодаря чему высокое напряжение питания двигателя не попадает на пульт управления.

Есть и другие варианты технического решения гальванической развязки. В первую очередь это трансформаторы. С их помощью легко решается гальваническая развязка по питанию. Особенно широкое применение получил этот способ в электрорадиотехнике бытового назначения. Дело в том, что напряжение питания бытовых приборов опасно для человека. Например, при отсутствии гальванической развязки между бытовой электросетью и платой обработки телевизионного сигнала, опасный для жизни потенциал будет находиться на всех металлических элементах конструкции телевизора, а доступ до «телевизионных внутренностей» вполне доступен домашним «самоделкиным». Вопрос защиты от электрического напряжения для таких устройств решается просто: на входе бытового прибора между ним и электросетью ставится трансформатор. Его первичная обмотка включается в сеть, а вторичная подает индуктированный в ней ток для питания телевизора. Вот здесь и проявляется одна из полезных особенностей трансформатора – с его помощью реализуется гальваническая развязка аналогового сигнала, что широко используется в различных устройствах.

С развитием силовых полупроводниковых приборов широкое распространение получили коммутирующие устройства – оптотиристоры - с оптронным (световым) каналом управления. Входная (управляющая) цепь оптрона содержит лампочку или светодиод, которые включаются при подаче сигнала управления. Световой поток попадает на светочувствительный управляющий электрод тиристора, который включает силовую цепь анод-катод. При этом обеспечивается 100% отсутствие гальванической связи вход-выход. Другой вариант оптронных устройств представляют собой оптотранзисторы, которыми легко решается гальваническая развязка аналогового сигнала, например, в датчиках измерительных приборов.

Использование гальванических развязок в технике имеет значительно больший спектр решаемых задач, чем освещено в этой статье. Современные технологии постоянно пополняют список таких устройств для инженерного применения.

fb.ru

Гальваническая развязка: назначение и методы

Добавлено 17 сентября 2018 в 13:04

Сохранить или поделиться

Введение

Гальваническая развязка (изоляция), обычно называемая просто развязкой, является способом, в соответствии с которым отдельные части электрической системы могут обладать различными потенциалами земли. Двумя наиболее распространенными причинами создания развязки является безопасность от сбоев в продуктах промышленного класса, и там, где требуется проводная связь между устройствами, каждое из которых имеет собственный источник питания.

Методы развязки по питанию

Трансформаторы

Наиболее распространенной формой развязки является использование трансформатора. При проектировании схемы стабилизации питания, где требуется развязка, изолирующая часть конструкции связана с необходимостью повышения/понижения уровня напряжения и не рассматривается как отдельная часть системы. В случае, если необходимо изолировать всю электрическую систему (например, для многого автомобильного тестирующего оборудования требуется, чтобы источники питания были изолированы от сети переменного тока), для создания необходимой изоляции последовательно с системой может быть установлен трансформатор 1:1.

Рисунок 1 – Ассортимент SMD трансформаторов

Конденсаторы

Менее распространенным методом создания развязки является использование последовательно включенных конденсаторов. Из-за возможности протекания сигналов переменного тока через конденсаторы этот метод может быть эффективным способом изоляции частей электрической системы от сети переменного тока. Этот метод менее надежен, чем метод с трансформатором, поскольку в случае неисправности трансформатор разрывает цепь, а конденсатор закорачивает. Одна из целей создания гальванической развязки от сети переменного тока заключается в том, чтобы в случае неисправности пользователь находился в безопасности от работающего неограниченного источника тока.

Рисунок 2 – Пример использования конденсаторов для создания развязки

Методы изоляции сигналов

Оптоизоляторы

Когда требуется, чтобы между двумя частями схемы с разными потенциалами земли проходил сигнал, популярным решением является оптоизолятор (оптопара). Оптоизолятор представляет собой фототранзистор, который открывается («включается»), когда внутренний светодиод находится под напряжением. Свет, излучаемый внутренним светодиодом, является путем прохождения сигнала, и, таким образом, изоляция между потенциалами земли не нарушается.

Рисунок 3 – Схема типового оптоизолятора

Датчик Холла

Другим методом передачи информации между электрическими системами с раздельными потенциалами земли является использование датчика, основанного на эффекте Холла. Датчик Холла детектирует индукцию неинвазивно и не требует прямого контакта с исследуемым сигналом и не нарушает изолирующий барьер. Наиболее распространенное использование проходящей индукционной информации через цепи с различными потенциалами земли – это датчики тока.

Рисунок 4 – Датчик тока, используемый для измерения тока через проводник

Заключение

Гальваническая развязка (изоляция) – это разделение электрических систем/подсистем, в которых может протекать не постоянный ток, и которые могут иметь различные потенциалы земли. Развязку можно разделить на основные категории: по питанию и по сигналу. Существует несколько способов достижения развязки, и в зависимости от требований к проекту некоторые методы могут быть предпочтительнее других.

Практический пример

Рисунок 5 – Схема проекта PoE (Power over Ethernet, питание через Ethernet) на основе контроллера TPS23753PW

На схеме выше несколько трансформаторов и оптоизолятор используются для создания импульсного источника питаний, который используется в устройствах Ethernet PD (Powered Device, питаемое устройство). Разъем J2 имеет внутренние магниты, которые изолируют всю систему от источника PoE. T1 и U2 изолируют источник питания (слева от красной линии) от стабилизированного выхода 3,3 В (справа от красной линии).

Оригинал статьи:

Сохранить или поделиться

radioprog.ru

Гальваническая развязка. Кто, если не оптрон? / Habr


Есть в электронике такое понятие как гальваническая развязка. Её классическое определение — передача энергии или сигнала между электрическими цепями без электрического контакта. Если вы новичок, то эта формулировка покажется очень общей и даже загадочной. Если же вы имеете инженерный опыт или просто хорошо помните физику, то скорее всего уже подумали про трансформаторы и оптроны.

Статья под катом посвящена различным способам гальванической развязки цифровых сигналов. Расскажем зачем оно вообще нужно и как производители реализуют изоляционный барьер «внутри» современных микросхем.

Речь, как уже сказано, пойдет о изоляции цифровых сигналов. Далее по тексту под гальванической развязкой будем понимать передачу информационного сигнала между двумя независимыми электрическими цепями.

Зачем оно нужно

Существует три основные задачи, которые решаются развязкой цифрового сигнала.

Первой приходит в голову защита от высоких напряжений. Действительно, обеспечение гальванической развязки — это требование, которое предъявляет техника безопасности к большинству электроприборов.

Пусть микроконтроллер, который имеет, естественно, небольшое напряжение питания, задает управляющие сигналы для силового транзистора или другого устройства высокого напряжения. Это более чем распространенная задача. Если между драйвером, который увеличивает управляющий сигнал по мощности и напряжению, и управляющим устройством не окажется изоляции, то микроконтроллер рискует попросту сгореть. К тому же, с цепями управления как правило связаны устройства ввода-вывода, а значит и человек, нажимающий кнопку «включить», легко может замкнуть цепь и получить удар в несколько сотен вольт.

Итак, гальваническая развязка сигнала служит для защиты человека и техники.

Не менее популярным является использование микросхем с изоляционным барьером для сопряжения электрических цепей с разными напряжениями питания. Тут всё просто: «электрической связи» между цепями нет, поэтому сигнал логические уровни информационного сигнала на входе и выходе микросхемы будут соответствовать питанию на «входной» и «выходной» цепях соответственно.

Гальваническая развязка также используется для повышения помехоустойчивости систем. Одним из основных источников помех в радиоэлектронной аппаратуре является так называемый общий провод, часто это корпус устройства. При передаче информации без гальванической развязки общий провод обеспечивает необходимый для передачи информационного сигнала общий потенциал передатчика и приемника. Поскольку обычно общий провод служит одним из полюсов питания, подключение к нему разных электронных устройств, в особенности силовых, приводит к возникновению кратковременных импульсных помех. Они исключаются при замене «электрического соединения» на соединение через изоляционный барьер.

Как оно работает

Традиционно гальваническая развязка строится на двух элементах — трансформаторах и оптронах. Если опустить детали, то первые применяются для аналоговых сигналов, а вторые — для цифровых. Мы рассматриваем только второй случай, поэтому имеет смысл напомнить читателю о том кто такой оптрон.

Для передачи сигнала без электрического контакта используется пара из излучателя света (чаще всего светодиод) и фотодетектора. Электрический сигнал на входе преобразуется в «световые импульсы», проходит через светопропускающий слой, принимается фотодетектором и обратно преобразуется в электрический сигнал.

Оптронная развязка заслужила огромную популярность и несколько десятилетий являлась единственной технологией развязки цифровых сигналов. Однако, с развитием полупроводниковой промышленности, с интеграцией всего и вся, появились микросхемы, реализующие изоляционный барьер за счет других, более современных технологий.

Цифровые изоляторы — это микросхемы, обеспечивающие один или несколько изолированных каналов, каждый из которых «обгоняет» оптрон по скорости и точности передачи сигнала, по уровню устойчивости к помехам и, чаще всего, по стоимости в пересчете на канал.

Изоляционный барьер цифровых изоляторов изготавливается по различным технологиям. Небезызвестная компания Analog Devices в цифровых изоляторах ADUM в качестве барьера использует импульсный трансформатор. Внутри корпуса микросхемы расположено два кристалла и, выполненный отдельно на полиимидной пленке, импульсный трансформатор. Кристалл-передатчик по фронту информационного сигнала формирует два коротких импульса, а по спаду информационного сигнала — один импульс. Импульсный трансформатор позволяет с небольшой задержкой получить на кристалле-передатчике импульсы по которым выполняется обратное преобразование.

Описанная технология успешно применяется при реализации гальванической развязки, во многом превосходит оптроны, однако имеет ряд недостатков, связанных с чувствительностью трансформатора к помехам и риску искажений при работе с короткими входными импульсами.

Гораздо более высокий уровень устойчивости к помехам обеспечивается в микросхемах, где изоляционный барьер реализуется на емкостях. Использование конденсаторов позволяет исключить связь по постоянному току между приемником и передатчиком, что в сигнальных цепях эквивалентно гальванической развязке.


Если последнее предложение вас взбудоражило..Если вы почувствовали жгучее желание закричать что гальванической развязки на конденсаторах быть не может, то рекомендую посетить треды вроде этого. Когда ваша ярость утихнет, обратите внимание что все эти споры датируются 2006 годом. Туда, как и в 2007, мы, как известно, не вернемся. А изоляторы с емкостным барьером давно производятся, используются и отлично работают.

Преимущества емкостной развязки заключаются в высокой энергетической эффективности, малых габаритах и устойчивости к внешним магнитным полям. Это позволяет создавать недорогие интегральные изоляторы с высокими показателями надежности. Они выпускаются двумя компаниями — Texas Instruments и Silicon Labs. Эти фирмы используют различные технологии создания канала, однако в обоих случаях в качестве диэлектрика используется диоксид кремния. Этот материал имеет высокую электрическую прочность и уже несколько десятилетий используется при производстве микросхем. Как следствие, SiO2 легко интегрируется в кристалл, причем для обеспечения напряжения изоляции величиной в несколько киловольт достаточно слоя диэлектрика толщиной в несколько микрометров.

На одном (у Texas Instruments) или на обоих (у Silicon Labs) кристаллах, которые находятся в корпусе цифрового изолятора, расположены площадки-конденсаторы. Кристаллы соединяются через эти площадки, таким образом информационный сигнал проходит от приемника к передатчику через изоляционный барьер.

Хотя Texas Instruments и Silicon Labs используют очень похожие технологии интеграции емкостного барьера на кристалл, они используют совершенно разные принципы передачи информационного сигнала.

Каждый изолированный канал у Texas Instruments представляет собой относительно сложную схему.

Рассмотрим её «нижнюю половину». Информационный сигнал подается на RC-цепочки, с которых снимаются короткие импульсы по фронту и спаду входного сигнала, по этим импульсам сигнал восстанавливается. Такой способ прохождения емкостного барьера не подходит для медленноменяющихся (низкочастотных) сигналов. Производитель решает эту проблему дублированием каналов — «нижняя половина» схемы является высокочастотным каналом и предназначается для сигналов от 100 Кбит/сек.

Сигналы с частотой ниже 100 Кбит/сек обрабатываются на «верхней половине» схемы. Входной сигнал подвергается предварительной ШИМ-модуляции с большой тактовой частотой, модулированный сигнал подается на изоляционный барьер, по импульсам с RC-цепочек сигнал восстанавливается и в дальнейшем демодулируется.
Схема принятия решения на выходе изолированного канала «решает» с какой «половины» следует подавать сигнал на выход микросхемы.

Как видно на схеме канала изолятора Texas Instruments, и в низкочастотном, и в высокочастотном каналах используется дифференциальная передача сигнала. Напомню читателю её суть.

Дифференциальная передача — это простой и действенный способ защиты от синфазных помех. Входной сигнал на стороне передатчика «разделяется» на два инверсных друг-другу сигнала V+ и V-, на которые синфазные помехи разной природы влияют одинаково. Приемник осуществляет вычитание сигналов и в результате помеха Vсп исключается.

Дифференциальная передача также используется в цифровых изоляторах от Silicon Labs. Эти микросхемы имеют более простую и надежную структуру. Для прохождения через емкостный барьер входной сигнал подвергается высокочастотной OOK (On-Off Keying) модуляции. Другими словами, «единица» информационного сигнала кодируется наличием высокочастотного сигнала, а «ноль» — отсутствием высокочастотного сигнала. Модулированный сигнал проходит без искажений через пару емкостей и восстанавливается на стороне передатчика.

Цифровые изоляторы Silicon Labs превосходят микросхемы ADUM-ы по большинству ключевых характеристик. Микросхемы от TI обеспечивают примерно такое же качество работы как Silicon Labs, но в отдельных случаях уступают в точности передачи сигнала.

Где оно работает

Хочется добавить пару слов о том в каких микросхемах используется изоляционный барьер.
Первыми стоит назвать цифровые изоляторы. Они представляют собой несколько изолированных цифровых каналов, объединенных в одном корпусе. Выпускаются микросхемы с различной конфигурацией входных и выходных однонаправленных каналов, изоляторы с двунаправленными каналами (используются для развязки шинных интерфейсов), изоляторы со встроенным DC/DC-контроллером для изоляции питания.Ещё больше картинокМикросхема серии Si86xx — цифровой изолятор с четырьмя прямыми и двумя обратными каналами

Микросхема серии Si860x — цифровой изолятор с двумя двунаправленными и двумя однонаправленными каналами

Микросхема серии Si88xx — цифровой изолятор с двумя каналами и встроенным DC/DC-контроллером


Кроме цифровых изоляторов выпускаются изолированные драйверы силовых транзисторов, в том числе на посадочное место оптодрайверов, усилители токового шунта, гальваноразвязанные АЦП и др.
Ещё больше картинокМикросхема серии Si823x — изолированный драйвер верхнего и нижнего ключа

Микросхема серии Si8261 — изолированный драйвер с эмулятором светодиода на входе

Микросхема серии Si8920 — изолированный усилитель токового шунта

Микросхема серии Si890x — изолированный АЦП

habr.com

Гальваническая развязка. Виды и задачи. Особенности

Гальваническая развязка это один из способов защитить работающий с электрическим оборудованием персонал. Такая развязка является основной мерой создания безопасности, которую необходимо рассматривать наровне с другими мерами безопасности: ограничение напряжения, заземление и зануление.

Емкостная гальваническая развязка

Такой вид развязки электрических цепей является еще одной разновидностью развязки цепей. При этом между цепями нет связи по току, земле и другим элементам.

В развязке, выполненной емкостями, для передачи данных применяется переменное электрическое поле. Между пластинами конденсаторов находится диэлектрик, который является изолятором между цепями.

Электрические параметры такой развязки определяют свойства диэлектрика, расстояние между обкладками и их размер. Достоинством емкостной гальванической изоляции является повышенная энергетическая эффективность, небольшие размеры устройства, способность передачи электроэнергии и невосприимчивость к внешним электромагнитным полям.

Это дает возможность создать экономичные и дешевые интегральные изоляторы, которые обладают устойчивостью к внешним факторам. Одним из недостатков развязки на основе конденсаторов является отсутствие дифференциального сигнала, в отличие от гальванической развязки индуктивного вида. В результате помехи и шум будут проходить вместе с рабочим сигналом.

Поэтому для нормальной работы помехи и частоту сигнала разделяют таким образом, чтобы емкость оказывала незначительное сопротивление рабочему сигналу, а для помех была бы хорошей преградой. Так же как и в трансформаторной развязке, здесь применяется кодирование сигнала с дальнейшим его детектированием.

Недостатком конденсаторной развязки можно назвать невозможность передачи данных с постоянной составляющей. Емкостная гальваноразвязка – это наиболее дешевый вариант развязки электрических цепей. Однако из-за своей малой эффективности и отсутствия защиты от помех он не нашел широкого применения.

Электромеханическая развязка

Принцип работы электромеханического варианта развязки заключается в использовании реле, которое служит для соединения электрических цепей при определенных изменениях входящих данных. Такую развязку называют релейной.

Электромагнитное реле из-за своего простого принципа работы и повышенной надежности получило широкую популярность автоматических системах и защитных схемах электроустановок. Такие реле разделяют по виду рабочего тока на реле переменного и постоянного тока.

Реле, функционирующие на постоянном токе в свою очередь разделяют на поляризованные и нейтральные. Поляризованные реле работают в зависимости от полярности сигнала управления, реагируя соответствующим образом. Работа нейтрального реле не зависит от направления тока (полярности), который протекает по обмотке.

Действие электромагнитных реле заключается в применении электромагнитных сил, образующихся в металлическом сердечнике во время протекания тока по обмотке. Элементы реле закрепляются на основании, а сверху закрываются крышкой. Над сердечником смонтирован подвижный якорь, выполненный в виде пластины, с несколькими контактами, напротив которых расположены парные стационарные контакты.

В первоначальном положении якорь притянут пружиной. При включении питания электромагнит преодолевает усилие пружины и притягивает якорь, тем самым размыкает или замыкает пары контактов, в зависимости от устройства реле.

После отключения питания пружина притягивает якорь в первоначальное положение. Некоторые исполнения реле содержат в схеме электронные компоненты в виде конденсатора, подключенного параллельно контактам для снижения помех и уменьшения искрения, а также резистора, подключенного к катушке для четкости работы реле.

Задачи гальванической изоляции

Гальваническая развязка призвана решать две основные задачи, которые в свою очередь разделяются на несколько определенных задач.

Независимость сигнальных цепей

Обеспечение независимости цепей сигналов при подключении устройств и приборов осуществляется за счет создания гальванической изоляции независимого контура сигналов относительно других цепей, которые имеются в этих устройствах и приборах. Такая независимость способна решить множество проблем электромагнитной совместимости:

  • Улучшение защиты от помех.
  • Снижение шума в цепи сигналов.
  • Возрастание точности измерения.

Изолированный выход или вход с помощью гальванической развязки часто способствует качественной совместимости с различными устройствами. В измерительных системах с несколькими каналами для сбора информации гальваническая изоляция бывает:

  • Групповая. Такая развязка выполняется одна одновременно на несколько каналов.
  • Индивидуальная. Ее называют поканальной, так как она выполняется отдельно для каждого канала.
Создание электробезопасности

С помощью гальванической развязки можно сделать безопасной работу с электрооборудованием. Такая электробезопасность будет полностью удовлетворять требованиям соответствующих действующих стандартов. Для электрооборудования при работах по управлению, измерению, а также при лабораторных работах используется ГОСТ52319 – 2005. В нем определены требования к устойчивости изоляции при испытаниях.

Следует отметить, что гальваническая изоляция является технической мерой создания электробезопасности, поэтому ее рассматривают совместно с различными защитами и блокировками.

Недостатки

Главным недостатком гальванической развязки цепи является высокий уровень помех. Однако в схемах с низкой частотой эта задача решается подключением аналоговых и цифровых фильтров.

В высокочастотных цепях емкость системы по отношению к земле и емкость между катушками трансформатора является ограничивающим фактором по отношению к преимуществам систем с гальванической развязкой. Емкость с землей можно снизить с помощью оптического кабеля и уменьшения геометрических размеров изолированной системы.

Популярной ошибкой при использовании цепей с гальванической изоляцией является неправильное понимание такого термина, как «напряжение изоляции». Если эта величина в модуле ввода равна 3000 В, это отнюдь не говорит о том, что на входы модуля можно подавать такую величину напряжения при эксплуатации.

В описаниях импортных устройств гальванической изоляции не всегда имеется толковое объяснение этому понятию. В отечественной литературе по импортным приборам и устройствам неоднозначно описывается параметр напряжения изоляции. Одни описывают напряжение, допустимое при работе изоляции длительное время (рабочее напряжение).

Другие этот параметр объясняют напряжением при испытании изоляции. При этом напряжение прикладывают к изоляции в течение определенного времени. Напряжение при испытании может в несколько раз быть выше рабочего напряжения, и служит для ускоренных методов испытаний в процессе эксплуатации. Воздействие на изоляцию, определяемое таким высоким напряжением, зависит от продолжительности тестового импульса.

Похожие темы:

 

electrosam.ru

Какая бывает гальваническая развязка | RuAut

Название "гальваническая изоляция" или "гальваническая развязка" носит основной принцип гальванической (электрической) изоляции электрической цепи, которая рассматривается, по отношению к остальным электрическим цепям. С помощью гальванической развязки осуществляется передача сигнала или энергии от одной (рассматриваемой) электрической цепи к другой цепи, при этом отсутствует непосредственный электрический контакт между этими цепями.

Посредством гальванической развязки становится возможным сделать, например, сигнальную цепь независимой. Это становится реально обеспечить, так как в целях обратной связи и при выполнении измерений происходит формирование независимого контура тока сигнальной цепи относительно контуров тока остальных цепей, к примеру, силовой. Описанное решение прекрасно подходит для осуществления электромагнитной совместимости: увеличивается точность и помехозащищенность производимых измерений. Гальваническая изоляция выхода и входа устройств очень часто повышает их совместимость с остальными устройствами в условиях тяжелой электромагнитной обстановки.

Однозначно можно утверждать и то, что гальваническая развязка служит и для обеспечения безопасности людей при работе с электрическим оборудованием. Но гальваническая развязка является только одной из мер, поэтому гальваническую изоляцию конкретной рассматриваемой цепи всегда требуется рассматривать обобщенно с остальными мерами обеспечения безопасности при работе с электрическими цепями. К таким мерам также относятся: цепи ограничения тока и напряжения и защитное заземление.

Для того, чтобы на практике применить гальваническую развязку можно прибегнуть к разнообразным техническим решениям, например:

  • трансформаторная (индуктивная) гальваническая изоляция (развязка). Такая развязка используется для изоляции цифровых цепей и в трансформаторах;
  • оптическая развязка, выполненная с помощью оптореле или оптрона (оптопара). Это техническое решение как правило можно встретить на многих современных импульсных источниках питания;
  • емкостная гальваническая развязка. Она применяется в случаях, когда сигнал подается через конденсатор очень маленькой емкости;
  • электромеханическая развязка, которая осуществляется, например, с помощью электромеханического реле.


На сегодняшний день наиболее широкое распространение получили два основных варианта гальваноразвязки в схемах. Это оптоэлектронный и трансформаторный тип гальванической развязки. 

Для того, чтобы построить гальваническую развязку трансформаторного типа, необходимо использовать магнитоиндукционный элемент (трансформатор) без сердечника или с сердечником или без сердечника. При этом выходное напряжение, которое снимается со вторичной обмотки этого трансформатора, должно быть пропорционально входному напряжению устройства. Но следует помнить, что при претворении данного способа в жизнь, очень важно иметь в виду нижеперечисленные недостатки этого метода, а именно:

  • несущий сигнал создает помехи, которые могут влиять на выходной сигнал;
  • частота пропускания ограничивается частотной модуляцией развязки;
  • достаточно большие габариты.

Благодаря тому, что в последние годы произошло резкое развитие технологии полупроводниковых устройств, то увеличились и возможности построения оптоэлектронных узлов развязки, которые основаны на оптронах.

Принцип работы оптрона очень прост: фототранзистор воспринимает свет, который излучается светодиодом. Таким образом выполняется гальваническая изоляция цепей, если одна из этих цепей связана с фототранзистором, а другая - со светодиодом.

Рассмотренное техническое решение имеет целый ряд достоинств и преимуществ: развязка способна работать с сигналами частотой до десятков мегагерц, достаточно широкий диапазон напряжений развязки, а именно до 500 вольт, что является очень важным аспектом для построения систем ввода данных, и, конечно же, совсем небольшие габариты компонентов.

В случае, если принято решение не использовать гальваническую изоляцию, то максимальный ток, который протекает между цепями, ограничивается только относительно небольшими электрическими сопротивлениями. Это может в результате привести к протеканию выравнивающих токов, которые будут способны причинить вред как людям, которые будут прикасаться к незащищенному оборудованию, так и компонентам цепи. Прибор, который обеспечивает развязку, специально ограничивает передачу энергии от одной цепи к другой.

www.ruaut.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *