8-900-374-94-44
[email protected]
Slide Image
Меню

Измерение напряжения attiny13 – Измерение напряжения питания / AVR / Сообщество EasyElectronics.ru

АмперВольтметр на attiny13 — Микроконтроллеры и Технологии

Дата публикации: .

Этот проект возник из любопытства – что мы можем сделать на таком маленьком микроконтроллере? Оказывается, много чего. В этом проекте микроконтроллер будет измерять напряжение, ток и температуру, пересчитывать их и выводить на ЖК дисплей формата 16×1. Несмотря на необычные решения, и несколько недостатков, его также можно использовать как измеритель напряжения питания. Размеры печатной платы составляют 35 × 16 мм.

Дисплей использует 6 контактов, поэтому вывод RESET придется сконфигурировать как обычный порт ввода/вывода. Это следует делать ПОСЛЕ программирования. Измерение напряжения осуществляется с помощью резистивного делителя. Измерения в диапазоне от 0 до 99.9 В выполняются с точностью 0.1 В. Ток измеряется путем измерения падения напряжения на шунтирующем резисторе сопротивлением 0.1 Ом. Диапазон измерения составляет от 0 до 9.99 А, точность 0.01 А. Температура измеряется с помощью аналогового датчика LM35 в диапазоне от 0 до 99.9 °С с точностью 0.01 °С. В качестве о напряжения для АЦП используется внутренний источник опорного напряжения микроконтроллера ATtiny13, его напряжение составляет 1.1 В. Таким образом, для измерения тока нам не придется использовать операционный усилитель (и отрицательное напряжение питания для него), а вычисления становятся гораздо проще.

 

Такому простому устройству свойственны небольшие недостатки. Измерение происходит на тех же самых выводах, по которым передаются данные для ЖК-дисплея, а выводам дисплея требуется ток около 80 мкА, чтобы подтянуть их к земле. Резистор сопротивлением 100 Ом в резистивном делителе плохо справляется с этой функцией, и на нем остается около 7 мВ относительно земли. Эти 7 мВ просто вычитаются из результата измерений, из за чего возникает погрешность и результат измерений получается нелинейным. Эта погрешность наиболее сильно проявляется в диапазоне измеряемых напряжений от 0 до 5 В.

Помните, что для измерения больших токов и напряжений мощности шунтирующего и добавочного резисторов должны быть соответствующими. Устройство калибруется с помощью двух подстроечных потенциометров. Контраст ЖК дисплея не регулируется, он задан с помощью двух резисторов, получаемое напряжение равно приблизительно 1 В. Большинство ЖК дисплеев хорошо работают с этим напряжением, но при желании вы можете установить свое значение. Ток измеряется относительно шины земли. Земля источника питания соединяется с землей на плате. Шунтирующий резистор подключается между землей (на схеме GND) и входом -V. Если вы захотите запитать это устройство от источника измеряемого напряжения, просто подключите вход стабилизатора напряжения ко входу +V. Не забывайте, что максимальное напряжение, которое вы можете подать на вход стабилизатора 7805, составляет 30 В. Таким образом, если вы захотите измерять более высокие напряжения или измерять напряжение в диапазоне от 0 В, понадобится отдельный источник питания для устройства. В этом случае перережьте дорожку под потенциометром калибровки напряжения, измеряемое напряжение подключите к контакту +V, а затем подключите источник питания к контакту ZAS на плате.

Плата спроектирована так, чтобы разместить на ней стабилизатор 7805 в корпусе TO252, но на ней можно без проблем поставить микросхему 78L05 в корпусе TO92. Общий ток, потребляемый устройством, включая подсветку ЖК-дисплея, составляет около 30 мА, так что стабилизатора 78L05 вполне хватит.

Диапазон измеряемых напряжений : 0 — 99 Вольт, с дискретностью 0,1 Вольт

Диапазон измеряемого тока : 0 — 9,9 Ампер (С шунтом 0,1 Ом)

Диапазон измеряемых температур : 0 — 99° С, с дискретностью 0,1° С

Программирование: порт сброса (reset) микроконтроллера должен быть запрограммирован как обычный порт (fuse RSTDISBL).

Внимание! При установке бита RSTDISBL=0, дальнейшее программирование микроконтроллера с помощью ISP будет невозможным. Восстановить заводскую конфигурацию микроконтроллера можно с помощью этого устройства. Остальные FUSE — биты по умолчанию.

В архив добавлен файл tiny13lcd_9_64-sample, это обновленная версия программы для микроконтроллера, производящая 64 измерения и отображающая их среднее значение.

Источник: elektroda.eu


Архив для статьи «АмперВольтметр на attiny13»
Описание:
Размер файла: 74.18 KB Количество загрузок: 5 396 Скачать

radioparty.ru

Трёхканальный UART АЦП на ATtiny13 / Habr

Привет хабр. Я уже давно вынашивал сделать UART Аналогового-Цифрового Преобразователя на ATtiny13, зачем делать именно на ATtiny13 ведь есть, к примеру, ATmega8 имеет аж 6 (для DIP корпуса) портов на которых, при помощи мультиплексора, можно проводить измерение АЦП?
Причин несколько:

— ATtiny13 стоит дешевле;
— В ATtiny13 более оптимально используются ресурсы микроконтроллера;
— Размеры;
— Энергопотребление;
— Просто мне так захотелось.

Конечно на мои аргументы можно найти множество контраргументов, например ATmega8 при использовании V-USB может превратится в плату ввода/вывода которой не нужен переходник с UART на USB, правда кроме последнего, и с этим пожалуй не поспоришь.

Поставил себе за цель получить опыт работы с программный UART’ом именно на ATtiny13, а опыт как говорится, бесценный. По-любому пригодится для будущих проектов.
Ну ладно, не буду тянуть и покажу, как работает в железе:

Пару слов по схеме, кстати, вот она:

Схема в Proteus

Скажу сразу, что не плохо бы уделить внимание фильтру питания, у меня это два конденсатора C1 — желательно «керамика» и как можно ближе к ножкам МК, ну и C2 — электролитический, второй можно поставить на 100 мкФ но у меня такого не оказалось под рукой, нашёл на 470 мкФ 10 В. Так же было бы не плохо по конденсатору на каждый порт АЦП, и как можно ближе к МК. R1 не принципиален, но по правилах «хорошего тона» — должен присутствовать.

Данные, как Вы могли видеть, приходят в формате 1023,666,10, ну хоть бери и сохраняй в формате CSV на компе или же другом устройстве, которое будет принимать эти данные.
Кстати принимает данные в моём случае недорогой преобразователь USB — UART основан на микросхеме PL2303HX. Пробовал питать ATtiny13 от бортовых 3.3 В что на преобразователе, по мультиметру к стати 3.4 В, работает, я поначалу думал что изменение питания на такое высокое значение как-то скажется на отправке данных, я где-то читал страшилку мол, нагрей на пару градусов, охлади и всё, прощай адекватные данные… Ничего подобного, охлаждал льдом, слегка грел зажигалкой(без фанатизма) — всё работает нормально, потерь не наблюдал.

Пару слов про код — код написан в среде BASCOM-AVR на Basic’е, вот предлагаю Вашему вниманию мой код на написание я потратил около чем 4-5 часов, так как я раньше не встречался с Basic’ом, но это время было потрачено не только на написание кода но и на то, чтобы разобраться с особенностями BASCOM-AVR, отладка и всякое такое.

Код
Samples Alias 64                                            ' Аналог директивы #define на Си
                                                                        ' Количество выборок АЦП 
$regfile = "attiny13.dat"                                   ' Конфигурации по умолчанию
$crystal = 1200000
$hwstack = 16
$swstack = 16
$framesize = 16
'$noramclear

Open "comb.0:9600,8,n,1" For Output As #1                   ' Настройка программного UART, скорость 9600 бод
                                                              ' Ножка PB0 будет как TXD, подключаем к RXD преобразователя

Config Adc = Single , Prescaler = Auto , Reference = Avcc   'Конфигурирование  АЦП, измерение относительно Vcc
Start Adc                                                   ' Запускаем преобразование

' Здесь Adc - режим считывания значения: Single - единичное считывание,
' также может быть Free (режим постоянной работы преобразователя)
' Prescaler = 128 - выбираем частоту дискретизации путем деления
' частоты кварца на определенное число (также может быть 2,4,8,16,32,64 или Auto).
' Если выбрать Auto, то компилятор сам выберет подходящую частоту работы АЦП
' Reference – выбор источника опорного напряжения. Aref – внешний источник,
' Avcc – напряжение питания схемы, Internal – внутренний ИОН на 1,1 в.

Declare Function Adc_get(byval Adc_port As Byte) As Word    ' Объявим переменную которая принимает номер нужного порта АЦП
                                                              ' И возвращает усреднённое от "Samples" количество выборок АЦП

Do                                                          ' Тут начинается вечный цикл

   Print #1 , Adc_get(1) ; "," ; Adc_get(2) ; "," ; Adc_get(3)       ' Выводим данные в формате *,*,*

Loop                                                        ' Тут кончается

Function Adc_get(byval Adc_port As Byte ) As Word           ' Переменная типа Word может принимать знач. до 65535

   Dim Temp_result As Word                                  ' Создадим переменную для буфера
   Dim Adc_cycles As Byte                                   ' И счётчик выборок АЦП

   Temp_result = 0

   For Adc_cycles = 1 To Samples

      Temp_result = Temp_result + Getadc(adc_port)

   Next

   Temp_result = Temp_result / Samples

   Adc_get = Temp_result                                    ' Эта функция возвращает Temp_result

End Function


Что делает данные код — по началу создаётся программный UART, тут это делается очень просто, задаём нужные параметры, порт, скорость и прочее, потом осуществляется конфигурация АЦП, объявление функции, ну это понятно, потом формируется строчка и результатами усреднённого числа от Samples выборок АЦП. Почему я выбрал именно 64 а не к примеру 42 или 108? Ну потому что 1023 * 64 это равно 65 472, а для типа Word, который я использовал для буфера максимальное значение которое переменная может принять — 65 535, это число является наибольшим числом, представимом в виде двухбайтного слова без знака, если добавить ещё одну выборку переменная попросту обнулится если АЦП возвратит 1023. С типом Long почему-то возникали проблемы, да лично мне и 64 выборки хватает, ниже я покажу как это работает на графике. Ну и потом в UART выводятся результаты.

Как Вы можете видеть шум конечно присутствует, даже не смотря на то что выводится усреднённое значение из 64 выборок, судя по даташиту шум в ± 2 LSB — норма, у меня же шум 1 LSB.

Скрин софта

Как Вы можете видеть, ATtiny13 отправляет значения 15-16 раз за секунду, что я считаю не плохо учитывая что это программный UART да и тиня делает по 64 измерения на порт, а их причём три.

МК потребляет следующий ток:

Питание 5 В — 2.71 мА
Питание 3.3 В 1.75 мА

Пару слов о программированию — как я сказал на видео, частота МК 1.2 МГц, все фьюзы по умолчанию, как в моём предыдущем топике Музыкальный дверной звонок в стиле Star Wars.
Вот фьюзы из калькулятора фьюзов:

Фьюзы

Ну и под конец пару фоток из разных ракурсов:

Небольшая фотосессия


Ссылки:

Альтернатива Wiring для Arduino — BASCOM-AVR
Софт которым делал графики — Serial oscilloscope
Архив с исходником, хекс-файлом и схемой в Proteus 7 Professional
Все мои публикации.

habr.com

АмперВольтметр на attiny13 — Микроконтроллеры и Технологии

Дата публикации: .

Этот проект возник из любопытства – что мы можем сделать на таком маленьком микроконтроллере? Оказывается, много чего. В этом проекте микроконтроллер будет измерять напряжение, ток и температуру, пересчитывать их и выводить на ЖК дисплей формата 16×1. Несмотря на необычные решения, и несколько недостатков, его также можно использовать как измеритель напряжения питания. Размеры печатной платы составляют 35 × 16 мм.

Дисплей использует 6 контактов, поэтому вывод RESET придется сконфигурировать как обычный порт ввода/вывода. Это следует делать ПОСЛЕ программирования. Измерение напряжения осуществляется с помощью резистивного делителя. Измерения в диапазоне от 0 до 99.9 В выполняются с точностью 0.1 В. Ток измеряется путем измерения падения напряжения на шунтирующем резисторе сопротивлением 0.1 Ом. Диапазон измерения составляет от 0 до 9.99 А, точность 0.01 А. Температура измеряется с помощью аналогового датчика LM35 в диапазоне от 0 до 99.9 °С с точностью 0.01 °С. В качестве о напряжения для АЦП используется внутренний источник опорного напряжения микроконтроллера ATtiny13, его напряжение составляет 1.1 В. Таким образом, для измерения тока нам не придется использовать операционный усилитель (и отрицательное напряжение питания для него), а вычисления становятся гораздо проще.

 

Такому простому устройству свойственны небольшие недостатки. Измерение происходит на тех же самых выводах, по которым передаются данные для ЖК-дисплея, а выводам дисплея требуется ток около 80 мкА, чтобы подтянуть их к земле. Резистор сопротивлением 100 Ом в резистивном делителе плохо справляется с этой функцией, и на нем остается около 7 мВ относительно земли. Эти 7 мВ просто вычитаются из результата измерений, из за чего возникает погрешность и результат измерений получается нелинейным. Эта погрешность наиболее сильно проявляется в диапазоне измеряемых напряжений от 0 до 5 В.

Помните, что для измерения больших токов и напряжений мощности шунтирующего и добавочного резисторов должны быть соответствующими. Устройство калибруется с помощью двух подстроечных потенциометров. Контраст ЖК дисплея не регулируется, он задан с помощью двух резисторов, получаемое напряжение равно приблизительно 1 В. Большинство ЖК дисплеев хорошо работают с этим напряжением, но при желании вы можете установить свое значение. Ток измеряется относительно шины земли. Земля источника питания соединяется с землей на плате. Шунтирующий резистор подключается между землей (на схеме GND) и входом -V. Если вы захотите запитать это устройство от источника измеряемого напряжения, просто подключите вход стабилизатора напряжения ко входу +V. Не забывайте, что максимальное напряжение, которое вы можете подать на вход стабилизатора 7805, составляет 30 В. Таким образом, если вы захотите измерять более высокие напряжения или измерять напряжение в диапазоне от 0 В, понадобится отдельный источник питания для устройства. В этом случае перережьте дорожку под потенциометром калибровки напряжения, измеряемое напряжение подключите к контакту +V, а затем подключите источник питания к контакту ZAS на плате.

Плата спроектирована так, чтобы разместить на ней стабилизатор 7805 в корпусе TO252, но на ней можно без проблем поставить микросхему 78L05 в корпусе TO92. Общий ток, потребляемый устройством, включая подсветку ЖК-дисплея, составляет около 30 мА, так что стабилизатора 78L05 вполне хватит.

Диапазон измеряемых напряжений : 0 — 99 Вольт, с дискретностью 0,1 Вольт

Диапазон измеряемого тока : 0 — 9,9 Ампер (С шунтом 0,1 Ом)

Диапазон измеряемых температур : 0 — 99° С, с дискретностью 0,1° С

Программирование: порт сброса (reset) микроконтроллера должен быть запрограммирован как обычный порт (fuse RSTDISBL). Внимание! При установке бита RSTDISBL=0, дальнейшее программирование микроконтроллера с помощью ISP будет невозможным. Восстановить заводскую конфигурацию микроконтроллера можно с помощью этого устройства. Остальные FUSE — биты по умолчанию.

В архив добавлен файл tiny13lcd_9_64-sample, это обновленная версия программы для микроконтроллера, производящая 64 измерения и отображающая их среднее значение.

Источник: elektroda.eu


Архив для статьи «АмперВольтметр на attiny13»
Описание:
Размер файла: 74.18 KB Количество загрузок: 5 396 Скачать

radioparty.ru

АмперВольтметр на attiny13 — Микроконтроллеры и Технологии

Дата публикации: .

Этот проект возник из любопытства – что мы можем сделать на таком маленьком микроконтроллере? Оказывается, много чего. В этом проекте микроконтроллер будет измерять напряжение, ток и температуру, пересчитывать их и выводить на ЖК дисплей формата 16×1. Несмотря на необычные решения, и несколько недостатков, его также можно использовать как измеритель напряжения питания. Размеры печатной платы составляют 35 × 16 мм.

Дисплей использует 6 контактов, поэтому вывод RESET придется сконфигурировать как обычный порт ввода/вывода. Это следует делать ПОСЛЕ программирования. Измерение напряжения осуществляется с помощью резистивного делителя. Измерения в диапазоне от 0 до 99.9 В выполняются с точностью 0.1 В. Ток измеряется путем измерения падения напряжения на шунтирующем резисторе сопротивлением 0.1 Ом. Диапазон измерения составляет от 0 до 9.99 А, точность 0.01 А. Температура измеряется с помощью аналогового датчика LM35 в диапазоне от 0 до 99.9 °С с точностью 0.01 °С. В качестве о напряжения для АЦП используется внутренний источник опорного напряжения микроконтроллера ATtiny13, его напряжение составляет 1.1 В. Таким образом, для измерения тока нам не придется использовать операционный усилитель (и отрицательное напряжение питания для него), а вычисления становятся гораздо проще.

 

Такому простому устройству свойственны небольшие недостатки. Измерение происходит на тех же самых выводах, по которым передаются данные для ЖК-дисплея, а выводам дисплея требуется ток около 80 мкА, чтобы подтянуть их к земле. Резистор сопротивлением 100 Ом в резистивном делителе плохо справляется с этой функцией, и на нем остается около 7 мВ относительно земли. Эти 7 мВ просто вычитаются из результата измерений, из за чего возникает погрешность и результат измерений получается нелинейным. Эта погрешность наиболее сильно проявляется в диапазоне измеряемых напряжений от 0 до 5 В.

Помните, что для измерения больших токов и напряжений мощности шунтирующего и добавочного резисторов должны быть соответствующими. Устройство калибруется с помощью двух подстроечных потенциометров. Контраст ЖК дисплея не регулируется, он задан с помощью двух резисторов, получаемое напряжение равно приблизительно 1 В. Большинство ЖК дисплеев хорошо работают с этим напряжением, но при желании вы можете установить свое значение. Ток измеряется относительно шины земли. Земля источника питания соединяется с землей на плате. Шунтирующий резистор подключается между землей (на схеме GND) и входом -V. Если вы захотите запитать это устройство от источника измеряемого напряжения, просто подключите вход стабилизатора напряжения ко входу +V. Не забывайте, что максимальное напряжение, которое вы можете подать на вход стабилизатора 7805, составляет 30 В. Таким образом, если вы захотите измерять более высокие напряжения или измерять напряжение в диапазоне от 0 В, понадобится отдельный источник питания для устройства. В этом случае перережьте дорожку под потенциометром калибровки напряжения, измеряемое напряжение подключите к контакту +V, а затем подключите источник питания к контакту ZAS на плате.

Плата спроектирована так, чтобы разместить на ней стабилизатор 7805 в корпусе TO252, но на ней можно без проблем поставить микросхему 78L05 в корпусе TO92. Общий ток, потребляемый устройством, включая подсветку ЖК-дисплея, составляет около 30 мА, так что стабилизатора 78L05 вполне хватит.

Диапазон измеряемых напряжений : 0 — 99 Вольт, с дискретностью 0,1 Вольт

Диапазон измеряемого тока : 0 — 9,9 Ампер (С шунтом 0,1 Ом)

Диапазон измеряемых температур : 0 — 99° С, с дискретностью 0,1° С

Программирование: порт сброса (reset) микроконтроллера должен быть запрограммирован как обычный порт (fuse RSTDISBL). Внимание! При установке бита RSTDISBL=0, дальнейшее программирование микроконтроллера с помощью ISP будет невозможным. Восстановить заводскую конфигурацию микроконтроллера можно с помощью этого устройства. Остальные FUSE — биты по умолчанию.

В архив добавлен файл tiny13lcd_9_64-sample, это обновленная версия программы для микроконтроллера, производящая 64 измерения и отображающая их среднее значение.

Источник: elektroda.eu


Архив для статьи «АмперВольтметр на attiny13»
Описание:
Размер файла: 74.18 KB Количество загрузок: 5 396 Скачать

radioparty.ru

АмперВольтметр на attiny13 — Микроконтроллеры и Технологии

Дата публикации: .

Этот проект возник из любопытства – что мы можем сделать на таком маленьком микроконтроллере? Оказывается, много чего. В этом проекте микроконтроллер будет измерять напряжение, ток и температуру, пересчитывать их и выводить на ЖК дисплей формата 16×1. Несмотря на необычные решения, и несколько недостатков, его также можно использовать как измеритель напряжения питания. Размеры печатной платы составляют 35 × 16 мм.

Дисплей использует 6 контактов, поэтому вывод RESET придется сконфигурировать как обычный порт ввода/вывода. Это следует делать ПОСЛЕ программирования. Измерение напряжения осуществляется с помощью резистивного делителя. Измерения в диапазоне от 0 до 99.9 В выполняются с точностью 0.1 В. Ток измеряется путем измерения падения напряжения на шунтирующем резисторе сопротивлением 0.1 Ом. Диапазон измерения составляет от 0 до 9.99 А, точность 0.01 А. Температура измеряется с помощью аналогового датчика LM35 в диапазоне от 0 до 99.9 °С с точностью 0.01 °С. В качестве о напряжения для АЦП используется внутренний источник опорного напряжения микроконтроллера ATtiny13, его напряжение составляет 1.1 В. Таким образом, для измерения тока нам не придется использовать операционный усилитель (и отрицательное напряжение питания для него), а вычисления становятся гораздо проще.

 

Такому простому устройству свойственны небольшие недостатки. Измерение происходит на тех же самых выводах, по которым передаются данные для ЖК-дисплея, а выводам дисплея требуется ток около 80 мкА, чтобы подтянуть их к земле. Резистор сопротивлением 100 Ом в резистивном делителе плохо справляется с этой функцией, и на нем остается около 7 мВ относительно земли. Эти 7 мВ просто вычитаются из результата измерений, из за чего возникает погрешность и результат измерений получается нелинейным. Эта погрешность наиболее сильно проявляется в диапазоне измеряемых напряжений от 0 до 5 В.

Помните, что для измерения больших токов и напряжений мощности шунтирующего и добавочного резисторов должны быть соответствующими. Устройство калибруется с помощью двух подстроечных потенциометров. Контраст ЖК дисплея не регулируется, он задан с помощью двух резисторов, получаемое напряжение равно приблизительно 1 В. Большинство ЖК дисплеев хорошо работают с этим напряжением, но при желании вы можете установить свое значение. Ток измеряется относительно шины земли. Земля источника питания соединяется с землей на плате. Шунтирующий резистор подключается между землей (на схеме GND) и входом -V. Если вы захотите запитать это устройство от источника измеряемого напряжения, просто подключите вход стабилизатора напряжения ко входу +V. Не забывайте, что максимальное напряжение, которое вы можете подать на вход стабилизатора 7805, составляет 30 В. Таким образом, если вы захотите измерять более высокие напряжения или измерять напряжение в диапазоне от 0 В, понадобится отдельный источник питания для устройства. В этом случае перережьте дорожку под потенциометром калибровки напряжения, измеряемое напряжение подключите к контакту +V, а затем подключите источник питания к контакту ZAS на плате.

Плата спроектирована так, чтобы разместить на ней стабилизатор 7805 в корпусе TO252, но на ней можно без проблем поставить микросхему 78L05 в корпусе TO92. Общий ток, потребляемый устройством, включая подсветку ЖК-дисплея, составляет около 30 мА, так что стабилизатора 78L05 вполне хватит.

Диапазон измеряемых напряжений : 0 — 99 Вольт, с дискретностью 0,1 Вольт

Диапазон измеряемого тока : 0 — 9,9 Ампер (С шунтом 0,1 Ом)

Диапазон измеряемых температур : 0 — 99° С, с дискретностью 0,1° С

Программирование: порт сброса (reset) микроконтроллера должен быть запрограммирован как обычный порт (fuse RSTDISBL). Внимание! При установке бита RSTDISBL=0, дальнейшее программирование микроконтроллера с помощью ISP будет невозможным. Восстановить заводскую конфигурацию микроконтроллера можно с помощью этого устройства. Остальные FUSE — биты по умолчанию.

В архив добавлен файл tiny13lcd_9_64-sample, это обновленная версия программы для микроконтроллера, производящая 64 измерения и отображающая их среднее значение.

Источник: elektroda.eu


Архив для статьи «АмперВольтметр на attiny13»
Описание:
Размер файла: 74.18 KB Количество загрузок: 5 396 Скачать

radioparty.ru

АмперВольтметр на attiny13 — Микроконтроллеры и Технологии

Дата публикации: .

Этот проект возник из любопытства – что мы можем сделать на таком маленьком микроконтроллере? Оказывается, много чего. В этом проекте микроконтроллер будет измерять напряжение, ток и температуру, пересчитывать их и выводить на ЖК дисплей формата 16×1. Несмотря на необычные решения, и несколько недостатков, его также можно использовать как измеритель напряжения питания. Размеры печатной платы составляют 35 × 16 мм.

Дисплей использует 6 контактов, поэтому вывод RESET придется сконфигурировать как обычный порт ввода/вывода. Это следует делать ПОСЛЕ программирования. Измерение напряжения осуществляется с помощью резистивного делителя. Измерения в диапазоне от 0 до 99.9 В выполняются с точностью 0.1 В. Ток измеряется путем измерения падения напряжения на шунтирующем резисторе сопротивлением 0.1 Ом. Диапазон измерения составляет от 0 до 9.99 А, точность 0.01 А. Температура измеряется с помощью аналогового датчика LM35 в диапазоне от 0 до 99.9 °С с точностью 0.01 °С. В качестве о напряжения для АЦП используется внутренний источник опорного напряжения микроконтроллера ATtiny13, его напряжение составляет 1.1 В. Таким образом, для измерения тока нам не придется использовать операционный усилитель (и отрицательное напряжение питания для него), а вычисления становятся гораздо проще.

 

Такому простому устройству свойственны небольшие недостатки. Измерение происходит на тех же самых выводах, по которым передаются данные для ЖК-дисплея, а выводам дисплея требуется ток около 80 мкА, чтобы подтянуть их к земле. Резистор сопротивлением 100 Ом в резистивном делителе плохо справляется с этой функцией, и на нем остается около 7 мВ относительно земли. Эти 7 мВ просто вычитаются из результата измерений, из за чего возникает погрешность и результат измерений получается нелинейным. Эта погрешность наиболее сильно проявляется в диапазоне измеряемых напряжений от 0 до 5 В.

Помните, что для измерения больших токов и напряжений мощности шунтирующего и добавочного резисторов должны быть соответствующими. Устройство калибруется с помощью двух подстроечных потенциометров. Контраст ЖК дисплея не регулируется, он задан с помощью двух резисторов, получаемое напряжение равно приблизительно 1 В. Большинство ЖК дисплеев хорошо работают с этим напряжением, но при желании вы можете установить свое значение. Ток измеряется относительно шины земли. Земля источника питания соединяется с землей на плате. Шунтирующий резистор подключается между землей (на схеме GND) и входом -V. Если вы захотите запитать это устройство от источника измеряемого напряжения, просто подключите вход стабилизатора напряжения ко входу +V. Не забывайте, что максимальное напряжение, которое вы можете подать на вход стабилизатора 7805, составляет 30 В. Таким образом, если вы захотите измерять более высокие напряжения или измерять напряжение в диапазоне от 0 В, понадобится отдельный источник питания для устройства. В этом случае перережьте дорожку под потенциометром калибровки напряжения, измеряемое напряжение подключите к контакту +V, а затем подключите источник питания к контакту ZAS на плате.

Плата спроектирована так, чтобы разместить на ней стабилизатор 7805 в корпусе TO252, но на ней можно без проблем поставить микросхему 78L05 в корпусе TO92. Общий ток, потребляемый устройством, включая подсветку ЖК-дисплея, составляет около 30 мА, так что стабилизатора 78L05 вполне хватит.

Диапазон измеряемых напряжений : 0 — 99 Вольт, с дискретностью 0,1 Вольт

Диапазон измеряемого тока : 0 — 9,9 Ампер (С шунтом 0,1 Ом)

Диапазон измеряемых температур : 0 — 99° С, с дискретностью 0,1° С

Программирование: порт сброса (reset) микроконтроллера должен быть запрограммирован как обычный порт (fuse RSTDISBL). Внимание! При установке бита RSTDISBL=0, дальнейшее программирование микроконтроллера с помощью ISP будет невозможным. Восстановить заводскую конфигурацию микроконтроллера можно с помощью этого устройства. Остальные FUSE — биты по умолчанию.

В архив добавлен файл tiny13lcd_9_64-sample, это обновленная версия программы для микроконтроллера, производящая 64 измерения и отображающая их среднее значение.

Источник: elektroda.eu


Архив для статьи «АмперВольтметр на attiny13»
Описание:
Размер файла: 74.18 KB Количество загрузок: 5 396 Скачать

radioparty.ru

АмперВольтметр на attiny13 — Готовые устройства — Каталог статей — Микроконтроллеры

Этот проект возник из любопытства – что мы можем сделать на таком маленьком микроконтроллере? Оказывается, много чего. В этом проекте микроконтроллер будет измерять напряжение, ток и температуру, пересчитывать их и выводить на ЖК дисплей формата 16×1. Несмотря на необычные решения, и несколько недостатков, его также можно использовать как измеритель напряжения питания. Размеры печатной платы составляют 35 х 16 мм.


Дисплей использует 6 контактов, поэтому вывод RESET придется сконфигурировать как обычный порт ввода/вывода. Это следует делать ПОСЛЕ программирования. Измерение напряжения осуществляется с помощью резистивного делителя. Измерения в диапазоне от 0 до 99.9 В выполняются с точностью 0.1 В. Ток измеряется путем измерения падения напряжения на шунтирующем резисторе сопротивлением 0.1 Ом. Диапазон измерения составляет от 0 до 9.99 А, точность 0.01 А. Температура измеряется с помощью аналогового датчика LM35 в диапазоне от 0 до 99.9 °С с точностью 0.01 °С. В качестве о напряжения для АЦП используется внутренний источник опорного напряжения микроконтроллера ATtiny13, его напряжение составляет 1.1 В. Таким образом, для измерения тока нам не придется использовать операционный усилитель (и отрицательное напряжение питания для него), а вычисления становятся гораздо проще.


АмперВольтметр на attiny13 — схема

 

Такому простому устройству свойственны небольшие недостатки. Измерение происходит на тех же самых выводах, по которым передаются данные для ЖК-дисплея, а выводам дисплея требуется ток около 80 мкА, чтобы подтянуть их к земле. Резистор сопротивлением 100 Ом в резистивном делителе плохо справляется с этой функцией, и на нем остается около 7 мВ относительно земли. Эти 7 мВ просто вычитаются из результата измерений, из за чего возникает погрешность и результат измерений получается нелинейным. Эта погрешность наиболее сильно проявляется в диапазоне измеряемых напряжений от 0 до 5 В.

Помните, что для измерения больших токов и напряжений мощности шунтирующего и добавочного резисторов должны быть соответствующими. Устройство калибруется с помощью двух подстроечных потенциометров. Контраст ЖК дисплея не регулируется, он задан с помощью двух резисторов, получаемое напряжение равно приблизительно 1 В. Большинство ЖК дисплеев хорошо работают с этим напряжением, но при желании вы можете установить свое значение. Ток измеряется относительно шины земли. Земля источника питания соединяется с землей на плате. Шунтирующий резистор подключается между землей (на схеме GND) и входом -V. Если вы захотите запитать это устройство от источника измеряемого напряжения, просто подключите вход стабилизатора напряжения ко входу +V. Не забывайте, что максимальное напряжение, которое вы можете подать на вход стабилизатора 7805, составляет 30 В. Таким образом, если вы захотите измерять более высокие напряжения или измерять напряжение в диапазоне от 0 В, понадобится отдельный источник питания для устройства. В этом случае перережьте дорожку под потенциометром калибровки напряжения, измеряемое напряжение подключите к контакту +V, а затем подключите источник питания к контакту ZAS на плате.

Плата спроектирована так, чтобы разместить на ней стабилизатор 7805 в корпусе TO252, но на ней можно без проблем поставить микросхему 78L05 в корпусе TO92. Общий ток, потребляемый устройством, включая подсветку ЖК-дисплея, составляет около 30 мА, так что стабилизатора 78L05 вполне хватит.

Диапазон измеряемых напряжений : 0 — 99 Вольт, с дискретностью 0,1 Вольт

Диапазон измеряемого тока : 0 — 9,9 Ампер (С шунтом 0,1 Ом)

Диапазон измеряемых температур : 0 — 99° С, с дискретностью 0,1° С

Программирование: порт сброса (reset) микроконтроллера должен быть запрограммирован как обычный порт (fuse RSTDISBL). Внимание! При установке бита RSTDISBL=0, дальнейшее программирование микроконтроллера с помощью ISP будет невозможным. Восстановить заводскую конфигурацию микроконтроллера можно с помощью этого устройства. Остальные FUSE — биты по умолчанию.

В архив добавлен файл tiny13lcd_9_64-sample, это обновленная версия программы для микроконтроллера, производящая 64 измерения и отображающая их среднее значение.

easymcu.ucoz.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *