Как правильно заряжать литий-ионный аккумулятор
Литий-ионные батареи на данный момент очень популярны. Больше 80% всех бытовых аккумов являются литий-ионными. И для того, чтоб эти батареи служили верой и правдой длительное время, очень принципиально верно с ними обращаться и верно заряжать.
Как правило, литий-ионный аккумулятор представляет собой дуэт – собственно, саму аккумуляторную банку и присоединенную к ней плату защиты. Плата защиты предохраняет аккумулятор от перезарядки или чрезмерной разрядки. Также она ограничивает максимальный ток аккумулятора – следит, чтобы не было короткого замыкания. Все это очень важно, поскольку литий-ионный аккумулятор может очень драматично реагировать на перезарядку или чрезмерный ток (а еще на перегрев) – банально взрываться, нанося совершенно небанальные повреждения.
Тем не менее, вполне могут поставляться аккумуляторы без защиты – только банки. В этом случае подразумевается, что контроль степени заряда и тока будет осуществляться дополнительной электроникой, о которой должен позаботиться сам потребитель.
Литий-ионные аккумуляторы с защитой и без нее
Необходимо всегда обращать внимание на наличие защитной электроники при использовании литий-ионных аккумуляторов. Без схем защиты ни заряжать, ни использовать эти аккумуляторы нельзя! Поскольку в нештатных ситуациях химические процессы в аккумуляторах могут начать протекать чрезмерно бурно. Это может привести к разрыву аккумуляторной банки, воспламенению выделяющихся газов, электролита и, в итоге, к нехилому взрыву с пламенем и разбрасыванием вокруг горящих частей аккумулятора.
Сам процесс правильного заряда аккумулятора – это контролируемый и управляемый процесс. Вначале разряженный аккумулятор заряжается постоянным током 0.2 – 1 С (С – это емкость аккумулятора в ампер/часах). заряжать литий-ионный аккумулятор без контроллера? 1.1.1.13 Как ионный аккумулятор без. При достижении напряжения 4.0-4.1В (в зависимости от рекомендаций производителя) зарядка продолжается при постоянном напряжении до достижения 4.2В на элемент. Допустимое отклонение напряжения составляет всего -0.05В. Как правильно заряжать аккумулятор смартфона. Для соблюдения этих режимов, безусловно, необходима соответствующая электроника. Как правило, это схемы, собранные на специализированных микросхемах. 3 Как зарядить литий-ионных аккумулятор без Как зарядить литий без контроллера. Хороший выбор – для заряда аккумуляторов использовать специализированные зарядные устройства. Также можно собрать зарядное устройство самостоятельно.
Литий-полимерные аккумуляторы заряжаются также, как и литий-ионные, поскольку по природе своей они очень похожи. В чем их основное различие — читайте в статье «Литий-полимерный аккумулятор — отличие от литий-ионного».
Лучший вариант – заряжать каждый аккумулятор отдельно. Кроме зарядных устройств, можно приобрести готовые платы-контроллеры для зарядки отдельных аккумуляторов. Например, на базе популярной микросхемы TP4056.
В этом выпуске покажу вам самый дешёвый способ зарядки последовательно соединённых аккумуляторов с баланс.
Зарядка одного литий-ионного аккумулятора
Миниатюрная плата (около 20х30 мм) позволяет заряжать литий-ионный аккумулятор от источника постоянного напряжения до 8В. Аккумулятор крона 9 КАК ЗАРЯЖАТЬ Обзор bms контроллера заряда литий. Подойдет, в том числе, компьютерный USB. как правильно заряжать литий ионный аккумулятор без как заряжать. Два индикатора отображают ход заряда. Плата сама остановит зарядку при достижении напряжения 4.2В – с ее помощью можно заряжать и аккумуляторы без платы защиты.
Если используется несколько аккумуляторов одновременно, то возможны варианты. Для увеличения емкости при том же выходном напряжении батареи соединяют параллельно – плюс к плюсу, минус к минусу. Например, если взять два аккумулятора емкостью 2500 мАh и соединить их параллельно, то получится батарея емкостью 5000 mAh с выходным напряжением 4.2В. Аккумулятор литий-ионный аккумулятор без контроллера И как их потом заряжать от. Заряжать такую батарею нужно также, как и отдельный аккумулятор, только это займет в 2 раза больше времени.
Если нужно повысить напряжение при сохранении емкости, аккумуляторы соединяют последовательно. Те же две банки из предыдущего примера, соединенные последовательно, дадут батарею с напряжением 8.4В и емкостью 2500mAh.
Ток зарядки последовательно соединенных аккумуляторов должен быть такой же, как и при зарядке одного аккумулятора, а напряжение соответствовать напряжению всей батареи – 4.2В умножить на количество последовательно соединенных элементов.
Когда аккумуляторы используются в связке, очень важно подбирать совершенно одинаковые банки – одного производителя и модели, одной степени свежести. В идеале – из одной партии. Дело в том, что разные аккумуляторы могут иметь немного отличающиеся емкости, напряжение и другие параметры. Соответственно, работать они будут неравномерно и быстрее выйдут из строя.
Правильно заряжать литий-ионные аккумуляторы, соединенные последовательно, необходимо устройствами, которые имеют систему балансировки заряда каждого элемента. Строго говоря, и разряжаться такие батареи должны через аналогичные системы балансировки. Суть ее работы состоит в том, чтобы следить за параметрами каждого аккумулятора и останавливать зарядку всей батареи, если один из аккумуляторов будет уже заряжен полностью. Аналогично при разряде: если один из аккумуляторов полностью разрядился – отключается вся батарея. Это позволит избежать перезаряда/переразряда аккумуляторов и продлит срок их службы.
Контроллер заряда/разряда двух последовательно соединенных аккумуляторов может выглядеть так:
Зарядка двух последовательно соединенных литий-ионных аккумуляторов
Контакты P и P- платы служат как для подачи напряжения при зарядке, так и при снятии тока при разрядке батареи. Плата может использоваться с аккумуляторами без плат защиты.
Для зарядки трех последовательно соединенных аккумуляторов может подойти такая схема:
Зарядка трех последовательно соединенных литий-ионных аккумуляторов
Так же как и в предыдущем варианте, контакты Р и Р- используются как для подачи напряжения зарядки, так и для снятия питания при работе от аккумуляторов. Плата имеет систему балансировки, защиту от перезаряда/разряда и защиту от короткого замыкания. Как заряжать литий ионный аккумулятор? Советы по использованию Li-ion аккумуляторов. Как. И также может использоваться с незащищенными аккумуляторами.
Похожая плата зарядки/разрядки имеется и для четырех последовательно соединенных аккумуляторов.
Зарядка четырех последовательно соединенных литий-ионных аккумуляторов
Большее количество последовательно соединенных аккумуляторов встречается достаточно редко. Как заряжать литий ионный аккумулятор. Чаще для увеличения мощности используют последовательно соединенные пары параллельно соединенных аккумуляторов. Например, батареи ноутбуков могут содержать три или четыре пары аккумуляторов.
Правильная зарядка аккумуляторов – совершенно необходимое условие для того, чтобы использование литий-ионных аккумуляторов было долговременным и эффективным. Уделите этому достойное внимание и аккумуляторы будут служить вам верой и правдой.
Источник
net-gadget.ru
Контроллеры сами по себе устройства полезные. И чтобы лучше разобрать эту тему, необходимо работать с определённым примером. Поэтому мы и рассмотрим контролер заряда аккумулятора. Что он собой представляет? Как устроен? Какие особенности работы существуют?
Конечно, самих видов значительно больше. Но поскольку мы рассматриваем контроллер заряда аккумулятора с общей точки зрения, то нам хватит и их. Если говорить про те, что применяются для солнечных батарей и ветряков, то в них верхний предел напряжения обычно равняется 15 вольтам, тогда как нижний – 12 В. При этом аккумулятор может генерировать в стандартном режиме 12 В. Источник энергии подключают к нему с использованием нормально замкнутых контактов реле. Что будет, когда напряжение аккумулятора превышает установленные 15 В? В таких случаях контроллером осуществляется замыкание контактов реле. В результате источник электроэнергии с аккумулятора переключается на нагрузочный балласт. Следует отметить, что его не особенно любят ставить для солнечных панелей из-за определённых побочных эффектов. А вот для ветряных генераторов они являются обязательными. Бытовая техника и мобильные устройства имеют свои особенности. Причем контроллер заряда аккумулятора планшета, сенсорного и кнопочного сотового телефонов являются практически идентичными.
Она базируется на транзисторах MOSFET. Обычно их два. Сама же микросхема может иметь 6 или 8 выводов. Для раздельного контроля заряда и разряда ячейки аккумулятора используют два полевых транзистора, которые находятся в одном корпусе. Так, один из них может подключать или отключать нагрузку. Второй транзистор делает эти же действия, но уже с источником питания (в качестве которого выступает зарядное устройство). Благодаря такой схеме реализации можно без проблем влиять на работу аккумулятора. При желании ею можно воспользоваться и в другом месте. Но следует учитывать, что схема контроллера заряда аккумулятора и он сам может применяться только к устройствам и элементам, что обладают ограниченным диапазоном работы. Более детально о таких особенностях мы сейчас и поговорим.
Когда напряжение достигает критически малых значений, которые делают проблемным само функционирование устройства (обычно это диапазон в 2,3-2,5В), то выключается соответствующий MOSFET-транзистор, который отвечает за подачу тока мобильнику. Далее происходит переход в режим сна с минимальным потреблением. И тут имеется довольно интересный аспект работы. Так, пока напряжение ячейки аккумулятора не станет больше 2,9-3,1 В, мобильное устройство не получится включить для работы в обычно режиме. Наверное, такое вы могли замечать, что когда подключаешь телефон, он показывает, что идёт зарядка, но сам включаться и функционировать в обычном режиме не хочет.
Следует отметить, что контроллер заряда аккумулятора имеет целый ряд элементов, которые должны уберечь от негативных последствий. Так, это и паразитные диоды, что размещены в полевых транзисторах, схема обнаружения заряда и ещё несколько мелких дополнений. Ах, да, и если есть возможность проверить контроллер заряда аккумулятора и узнать работоспособность источника энергии, то его функционирование можно восстановить даже при «смерти». Конечно, под этим подразумевается просто прекращение работы, а не взрыв или расплавление. В этом деле могут помочь специальные приборы, которые проводят специальную «восстановительную» зарядку. Конечно, работать они будут долго – процесс может растянуться на десятки часов, но после успешного завершения аккумулятор будет работать почти как новенький.
fb.ru
На сегодняшний день литий ионные аккумуляторы являются самыми эффективными аккумуляторами. Они компактные, имеют большую энергоемкость, лишены эффекта памяти. При всех достоинствах у них имеется один существенный недостаток, их работу и процесс заряда нужно тщательно контролировать. Если аккумулятор разрядится ниже некоторого предела или перезарядить, он быстро теряет свои свойства, вздуться и даже взорваться. Тоже самое и в случае перегрузки и коротких замыканиях — нагрев, образование газов и в итоге взрыв.
Некоторые литий ионных аккумуляторы снабжены предохранительным клапаном, который не даст аккумулятору взорваться, но большая часть мощных полимерных аккумуляторов таких клапанов не имеют.
Другими словами, при эксплуатации литий ионных аккумуляторов требуется система их защиты.
Многие наверняка заметили маленькие платы в аккумуляторах мобильных телефонов, вот как раз эта плата и является защитой. Защищает она от глубкого разряда, от перезаряда и от коротких замыканий или перегрузок по току.
Схема этой защиты очень простая, на плате находиться пара микросхем с мелочевкой.
За всеми процессами следит микросхема DW01. Вторая микросхема — это сборка из двух полевых транзисторов. Первый транзистор контролирует процесс разряда, второй отвечает за заряд батареи.
Во время разряда микросхема следит за падением напряжения на переходах полевых ключей, если оно доходит до критической величины (150-200мВ), микросхема закрывает транзисторы, отключая батарею от нагрузки. Работа схемы восстанавливается менее чем за секунду после того, после снятия нагрузки.
Падение напряжение на переходах транзисторов микросхема отслеживает через второй вывод.
В зависимости от емкости аккумулятора эти контроллеры могут кардинально отличаться внешним видом, током короткого замыкания и топологией схемы, но функция у них всегда одинаковая — защищать аккумулятор от перезаряда, глубокого разряда и перегрузки по току. Многие контроллеры также обеспечивают защиту от перегрева банки, контроль температуры осуществляется термодатчиком.
У меня скопилось очень много плат защиты от аккумуляторов мобильных телефонов и как раз для одного моего проекта в котором задействован литий ионный аккумулятор понадобилась система защиты. Проблема в том, что эти платы рассчитаны на максимальный ток в 1Ампер, а мне нужна была плата с током минимум 6-7 Ампер. Платы с нужным для моих целей током стоят меньше пол доллара, но ждать месяц-другой я не мог. Осмотрев китайские платы на алиэкспресс я понял, что они не многим отличаются от моих. Схематика та же, только ток защиты побольше за счёт параллельного включения силовых транзисторов.
При параллельном соединении полевых транзисторов, сопротивление их каналов будет значительно меньше, поэтому падение напряжения на них будет меньше, а ток срабатывания защиты будет больше. Параллельное соединение ключей даст возможность коммутировать большие токи, чем больше ключей , тем больше общий ток коммутации.
В схеме применены стандартные сборки из двух полевиков в одном корпусе. Их часто применяют на платах защиты аккумуляторов смартфонов и не только.
Сборки 8205А имеют очень много аналогов, как и микросхемы контроля DW01.
После сборки платы я протестировал её. Получилось именно то, что мне нужно для проекта:
Литий ионные аккумуляторы имеют малый саморазряд, но аккумулятор дополненный такой платой будет разряжаться быстрее, чем аккумулятор без защиты. Ток потребления схемы защиты мизерный, и составляет около 2,5 МИКРОампер.
Подробнее о работе платы защиты
{youtube}lXKELGFo79o{/youtube}
Собираем мощную плату контроля
{youtube}_w-AUCG4k_0{/youtube}
Плата защиты для одной банки LI-ION http://ali.pub/28463y
Плата защиты для двух банок http://ali.pub/284681
Для трех банок http://ali.pub/28464x
Иные платы защиты http://ali.pub/2846eg
Платы защиты с функцией балансировки банок http://ali.pub/28463d
Контроллер DW01 http://ali.pub/284627
Купить электронную нагрузку http://ali.pub/28ncwt
Печатная платы
С уважением — АКА КАСЬЯН
vip-cxema.org
Новости
По мере распространения «зеленых» технологий все большее внимание стало уделяться КПД источников питания. Микросхемы управления источниками питания позволяют снизить общую стоимость системы, потери на коммутацию, размеры устройства и помехи. В статье рассматривается реализация технологии регулировки в первичной цепи дросселя в схемах зарядного устройства и светодиодного драйвера. Выходной ток и напряжение стабилизируются с помощью опорного сигнала напряжения с дополнительной обмотки дросселя. В статье обсуждаются проблемы проектирования маломощных систем заряда батарей, которые применяются в широком спектре устройств. Рассмотрены системы заряда на базе шунтовой архитектуры, которые представляют собой эффективное решение для заряда различных типов батарей и обеспечивают их защиту. Статья представляет собой перевод [1]. Припечание: в статье оставлена терминология оригинала. В русскоязычной литературе вместо термина «шунтовой ИОН», часто используют термин «параллельный ИОН» |
19 октября В статье рассмотрены некоторые особенности контроллеров зарядки литиево-ионных (Li-Ion) аккумуляторов, созданных на базе линейных и импульсных стабилизаторов.В Состязание разработчиков и производителей портативных гаджетов по внедрению во вновь создаваемые (и при этом все меньшего размера) устройства аппаратных модулей с расширенными функциональными возможностями вряд ли можно остановить. Большие яркие дисплеи с сенсорными панелями, Wi-Fi, WiMAX, Bluetooth, GSM, GPS, видеокамеры с большим форматом матрицы видеосенсора, аудио- и видеоплееры — всего лишь неполный перечень встроенных модулей и возможностей, предоставляемых современными мобильными устройствами. И, по сути, на пути миниатюризации гаджетов всегда возникают две неразрывно связанные проблемы: отвод рассеиваемой мощности и малые габариты, в которые необходимо все это упаковать. Мобильное устройство должно не только привлекать потребителей своими интеллектуальными возможностями, но и не вызывать при этом ожогов (в прямом смысле этого слова) у пользователя. Минимизация уровня тепловыделения — один из важных приоритетов при разработке. Одним из источников тепла является контроллер зарядного устройства, встроенного в мобильный прибор аккумулятора. Одним из обязательных компонентов современных портативных устройств является
мало в чем изменившийся за последние годы литиево-ионный аккумулятор,
отличающийся наилучшими показателями среди ряда других химических источников
электроэнергии, предназначенных для использования в портативных приложениях.
Бесспорно, емкость его выросла, существенно улучшены и другие характеристики,
что позволило расширить функциональные возможности портативных устройств,
однако базовый принцип его работы и алгоритм зарядки мало в чем изменились
[1–7].
Что же подразумевается под предложенным специалистами компании Linear
Technology термином «идеальный» диод? [3, 7]. Широко применяемые диоды Шоттки
отличаются по сравнению с другими полупроводниковыми диодами малым прямым
падением напряжения и высокой скоростью переключения. При использовании этого
диода в качестве полупроводникового ключа, например, в схемах автоматического
подключения к нагрузке аккумулятора или сетевого адаптера, как правило,
применяется простая схема монтажного ИЛИ, основной недостаток которой —
сравнительно большое падение напряжения на диоде. При повышении тока нагрузки
растут и потери мощности на нем. Решить эту проблему можно с использованием в
качестве диода МОП-транзистора. Идея не нова, однако специалисты компании
Linear Technology при замене диода на МОП-транзистор предложили также способ
определения момента переключения идеального диода в закрытое и открытое
состояния. Для этого осуществляется мониторинг падения напряжения между истоком
(анодом) и стоком (катодом) транзистора. В рассматриваемом случае — это
МОП-транзистор с каналом N-типа. В момент подключения входного напряжения,
конечно, если входное напряжение больше выходного, ток через защитный диод
транзистора течет в нагрузку. Транзистор открывается, и падение напряжения на
нем равно ILOAD∙RDS, где RDS — сопротивление
перехода сток-исток. Как правило, это напряжение примерно в десять раз ниже,
чем падение напряжения на диоде Шоттки. Если напряжение на аноде ниже, чем на
катоде, транзистор закрывается.
Таблица 1. Параметры контроллеров зарядки, созданных на базе линейных регуляторов
Таблица 2. Параметры контроллеров зарядки, созданных на базе импульсных регуляторов
Схема непосредственного подключения аккумулятора к нагрузке и контроллеру
зарядки, созданному на основе линейного регулятора, отличается простотой, а
устройства, выполненные на базе этой архитектуры, — более низкой стоимостью.
Однако при больших токах нагрузки вряд ли можно рекомендовать использование
этой топологии из-за большой вероятности перегрева кристалла ИС. При
непосредственном подключении аккумулятора к нагрузке можно достичь минимального
изменения уровня напряжения на нагрузке. 1. Steven Martin. Speed up Li-ion battery charging and reduce heat
with a switching power-path manager. — Linear Technology
(www.linear.com). |
www.russianelectronics.ru
Простой контроллер литиевого аккумулятора на PIC12F675
В последние годы стали очень популярны литий-ионные аккумуляторы самых различных размеров и емкостей от мобильных телефонов, цифровых фотоаппаратов и прочей техники. У многих появляется желание использовать их в своих устройствах.
Но тут возникает проблема с организацией правильной зарядки таких аккумуляторов. Особенно если Вы проживаете не в крупном городе — не везде есть возможность купить специализированный контроллер зарядки.
Вот по этой причине и появилось на свет это недорогое и предельно простое зарядное устройство, которое может самостоятельно зарядить аккумулятор, с помощью одной кнопки включить или выключить питаемый прибор и следить за степенью разрядки аккумулятора, не допуская опасного переразряда.
Схема реализована на дешёвом микроконтроллере PIC12F675 и управляемом стабилитроне TL431. Все детали обойдутся примерно в доллар-полтора. Зарядное устройство многократно проверено при работе с различными приборами с батарейным питанием и зарекомендовало себя как надежное неприхотливое и легко повторяемое.
При заряде аккумулятора светодиод плавно моргает. После окончания зарядки скорость вспышек сильно возрастает, а длительность уменьшается.
Вариант схемы (прошивка в архиве присутствует) на полевых транзисторах p-FET
Если при повторении этой конструкции у Вас возникли какие-то вопросы или идеи по улучшению её, напишите мне в онлайн форме свои соображения по этому поводу.
Если Вы авторизуетесь на сайте в качестве пользователя, Вы будете получать уведомления о новых материалах на сайте.
smartelectronix.biz
Если расковырять любой аккумулятор от сотового телефона, то можно обнаружить, что к выводам ячейки аккумулятора припаяна небольшая печатная плата. Это так называемая схема защиты, или Protection IC. Из-за своих особенностей литиевые аккумуляторы требуют постоянного контроля. Давайте разберёмся более детально, как устроена схема защиты, и из каких элементов она состоит.
Рядовая схема контроллера заряда литиевого аккумулятора представляет собой небольшую плату, на которой смонтирована электронная схема из SMD компонентов. Схема контроллера 1 ячейки («банки») на 3,7V, как правило, состоит из двух микросхем. Одна микросхема управляющая, а другая исполнительная – сборка двух MOSFET-транзисторов.
На фото показана плата контроллера заряда от аккумулятора на 3,7V.
Микросхема с маркировкой DW01-P в небольшом корпусе – это по сути «мозг» контроллера. Вот типовая схема включения данной микросхемы. На схеме G1 — ячейка литий-ионного или полимерного аккумулятора. FET1, FET2 — это MOSFET-транзисторы.
Цоколёвка, внешний вид и назначение выводов микросхемы DW01-P.
Транзисторы MOSFET не входят в состав микросхемы DW01-P и выполнены в виде отдельной микросхемы-сборки из 2 MOSFET транзисторов N-типа. Обычно используется сборка с маркировкой 8205, а корпус может быть как 6-ти выводной (SOT-23-6), так и 8-ми выводной (TSSOP-8). Сборка может маркироваться как TXY8205A, SSF8205, S8205A и т.д. Также можно встретить сборки с маркировкой 8814 и аналогичные.
Вот цоколёвка и состав микросхемы S8205A в корпусе TSSOP-8.
Два полевых транзистора используются для того, чтобы раздельно контролировать разряд и заряд ячейки аккумулятора. Для удобства их изготавливают в одном корпусе.
Тот транзистор (FET1), что подключен к выводу OD (Overdischarge) микросхемы DW01-P, контролирует разряд аккумулятора – подключает/отключает нагрузку. А тот (FET2), что подключен к выводу OC (Overcharge) – подключает/отключает источник питания (зарядное устройство). Таким образом, открывая или закрывая соответствующий транзистор, можно, например, отключать нагрузку (потребитель) или останавливать зарядку ячейки аккумулятора.
Давайте разберёмся в логике работы микросхемы управления и всей схемы защиты вцелом.
Как известно, перезаряд литиевого аккумулятора свыше 4,2 – 4,3V чреват перегревом и даже взрывом.
Если напряжение на ячейке достигнет 4,2 – 4,3V (Overcharge Protection Voltage — VOCP), то микросхема управления закрывает транзистор FET2, тем самым препятствуя дальнейшему заряду аккумулятора. Аккумулятор будет отключен от источника питания до тех пор, пока напряжение на элементе не снизится ниже 4 – 4,1V (Overcharge Release Voltage – VOCR) из-за саморазряда. Это только в том случае, если к аккумулятору не подключена нагрузка, например он вынут из сотового телефона.
Если же аккумулятор подключен к нагрузке, то транзистор FET2 вновь открывается, когда напряжение на ячейке упадёт ниже 4,2V.
Если напряжение на аккумуляторе падает ниже 2,3 – 2,5V (Overdischarge Protection Voltage — VODP), то контроллер выключает MOSFET-транзистор разряда FET1 – он подключен к выводу DO.
Далее микросхема управления DW01-P перейдёт в режим сна (Power Down) и потребляет ток всего 0,1 мкА. (при напряжении питания 2V).
Тут есть весьма интересное условие. Пока напряжение на ячейке аккумулятора не превысить 2,9 – 3,1V (Overdischarge Release Voltage — VODR), нагрузка будет полностью отключена. На клеммах контроллера будет 0V. Те, кто мало знаком с логикой работы защитной схемы могут принять такое положение дел за «смерть» аккумулятора. Вот лишь маленький пример.
Миниатюрный Li-polymer аккумулятор 3,7V от MP3-плеера. Состав: управляющий контроллер — G2NK (серия S-8261), сборка полевых транзисторов — KC3J1.
Аккумулятор разрядился ниже 2,5V. Схема контроля отключила его от нагрузки. На выходе контроллера 0V.
При этом если замерить напряжение на ячейке аккумулятора, то после отключения нагрузки оно чуть подросло и достигло уровня 2,7V.
Чтобы контроллер вновь подключил аккумулятор к «внешнему миру», то есть к нагрузке, напряжение на ячейке аккумулятора должно быть 2,9 – 3,1V (VODR).
Тут возникает весьма резонный вопрос.
По схеме видно, что выводы Стока (Drain) транзисторов FET1, FET2 соединены вместе и никуда не подключаются. Как же течёт ток по такой цепи, когда срабатывает защита от переразряда? Как нам снова подзарядить «банку» аккумулятора, чтобы контроллер опять включил транзистор разряда — FET1?
Дело в том, что внутри полевых транзисторов есть так называемые паразитные диоды – они являются результатом технологического процесса изготовления MOSFET-транзисторов. Вот именно через такой паразитный (внутренний) диод транзистора FET1 и будет течь ток заряда, так как он будет включен в прямом направлении.
Если порыться в даташитах на микросхемы защиты Li-ion/polymer (в том числе DW01-P, G2NK), то можно узнать, что после срабатывания защиты от глубокого разряда, действует схема обнаружения заряда — Charger Detection. То есть при подключении зарядного устройства схема определит, что зарядник подключен и разрешит процесс заряда.
Зарядка до уровня 3,1V после глубокого разряда литиевой ячейки может занять весьма длительное время — несколько часов.
Чтобы восстановить литий-ионный/полимерный аккумулятор можно использовать специальные приборы, например, универсальное зарядное устройство Turnigy Accucell 6.
Именно этим методом удалось восстановить Li-polymer 3,7V аккумулятор от MP3-плеера. Зарядка от 2,7V до 4,2V заняла 554 минуты и 52 секунды, а это более 9 часов! Вот столько может длиться «восстановительная» зарядка.
Кроме всего прочего, в функционал микросхем защиты литиевых акумуляторов входит защита от перегрузки по току (Overcurrent Protection) и короткого замыкания. Защита от токовой перегрузки срабатывает в случае резкого падения напряжения на определённую величину. После этого микросхема ограничивает ток нагрузки. При коротком замыкании (КЗ) в нагрузке контроллер полностью отключает её до тех пор, пока замыкание не будет устранено.
Источник
< Предыдущая | Следующая > |
---|
bsh1.ru
Принципиальная схема контроллера заряда для двух Li-Ion аккумуляторов
Описание принципиальной схемы.
U1 — микросхема LM317 в корпусе TO220Зарядное устройство основано на регулируемом интегральном стабилизаторе напряжения LM317. На транзисторе Q1 собран узел ограничения тока заряда. С транзистором BC546 и резистором на 1 ом максимальный зарядный ток у меня составляет около 500мА. Нужно помнить, что через этот резистор течет зарядный ток аккумулятора, поэтому если вы планируете заряжать батарею током более 500 мА стоит применить резистор мощностью 1 Вт. максимальный зарядный ток устанавливается подбором этого резистора. Чем меньше сопротивление тем больше зарядный ток и наоборот.
Подстроечным резистором R2 устанавливаем выходное напряжение устройства. То есть то максимальное напряжение, до которого будет заряжена аккумуляторная батарея. Для двух литий ионных аккумуляторов максимальное напряжение равно 8.4 В. Но для большей безопасности и продления срока службы аккумуляторов я бы посоветовал установить это напряжение в районе 8.2 — 8.3 В. Установку этого напряжения нужно производить не подключая аккумулятор. Вместо аккумулятора подключаем к клемам Out+ и Out- резистор сопротивлением 100 ом и вращением движка R2 устанавливаем напряжение 8.2- 8.3 В. Убираем резистор и подключаем к устройству аккумуляторы. Проверяем ток, который течет через батарею и оставляем батарею заряжаться, периодически измеряя на ней напряжение. Зарядный ток будет уменьшаться по мере приближения напряжения на батарее к установленному уровню. Убедитесь что напряжение на каждом из аккумуляторов в конце заряда не превышает 4.2 вольта. Если даже на одном из аккумуляторов напряжение больше, то придется уменьшить напряжение заряда поворотом движка R2. На этом настройку устройства можно считать законченной
ВНИМАНИЕ!Микросхема LM317 нагревается в процессе заряда аккумуляторов, поэтому ее необходимо устанавливать на небольшом радиаторе.
musbench.com