8-900-374-94-44
[email protected]
Slide Image
Меню

Мощный стабилитрон – Стабилитроны мощные

Стабилитроны мощные

Тип
прибора
Предельные значения
параметров при Т=25°С
Значения параметров
при Т=25°С
Тк.мах
п.)

°С

Uст.ном.

B

при
Iст.ном.
mA
Рмакс.

mBt

Uст.rст.

Om

aст.
10-2
%/°С
Iст.
мин
B
мах
B
мин
mA
мах
mA
Д815А5,6100080005,06,21,04,5501400125
Д815Б6,8100080006,17,51,26,0501150125
Д815В8,2100080007,49,11,59,050950125
Д815Г10,050080009,0111,88,025800125
Д815Д12,0500800010,813,32,09,025650125
Д815Е15,0500800013,316,42,5
10,0
25550125
Д815Ж18,0500800016,219,83,011,025450125
Д815И4,7100080004,25,20,814,0501400125
Д816А22,0150500019,624,27,012,010230125
Д816Б27,0150500024,229,58,012,010180125
Д816В33,0150500029,5361012,010150125
Д816Г
36,0150500035,0431212,010130125
Д816Д47,0150500042,551,51512,010110125
Д817А56,050,0500050,551,53514,05,090125
Д817Б68,050,0500061,0754014,05,075125
Д817В82,050,0500074,0904514,05,060125
Д817Г100,050,0500090,0
110
5014,05,050125
КС406А8,215,05007,78,76,59,00,53585
КС406Б10,012,05009,410,68,511,00,252885
2С411А8,05,03407,08,56,07,03,040125
2С411Б9,05,034089,5108,03,036125
КС407А3,310,05003,13,528-8,01,010085
КС407Б
3,920,05003,74,123-7,01,08385
КС407В4,720,05004,4519-3,01,06885
КС407Г5,120,05004,85,417±2,01,05985
КС407Д6,818,05006,47,24,55,01,04285
КС409А5,65,04005,35,9202…41,04885
КС412А6,25,04005,86,6
10
-1…61,055125
КС433А3,360,010002,973,6325-10,03,0229125
2С433А3,360,010002,973,6314-10,03,0229125
КС439А3,951,010003,514,2925-10,03,0212125
2С439А3,951,010003,514,2912-10,03,0212125
КС447А4,743,010004,235,1718-8…33,0190
125
2С447А4,743,010004,235,1710-8…33,0190125
КС456А5,636,010005,046,167,05,03,0167125
2С456А5,636,010005,046,167,05,03,0167125
КС468А6,830,010006,127,485,06,53,0119125
2С468А6,829,010006,127,485,06,53,0142125
КС482А8,25,0 10007,49,0258,01,096125
2С482А8,25,010007,49,0258,01,096125
КС508А12,010,550011,412,71111,00,252385
КС508Б15,010,550013,815,61611,00,251885
КС508В16,07,850015,317,11711,00,251785
КС508Г18,07,050016,819,12111,00,25
15
85
КС508Д24,05,250022,825,63312,00,251185
КС509А15,015,0130013,815,6159,00,54285
КС509Б18,015,0130018,619,1209,00,53585
КС509В20,010,0130018,821,2249,00,53185
КС510А10,05,010009,0112510,01,079125
2С510А10,05,010009,0112510,01,079125
КС512А12,05,0100010,813,22510,01,067125
2С512А12,05,0100010,813,22510,01,067125
КС515А15,05,0100013,516,52510,01,053125
2С515А15,05,0100013,516,52510,01,053125
2С516А10,05,03409,010,5129,03,032125
2С516Б11,05,03401012159,53,029125
2С516В
13,05,034011,514189,53,024125
КС518А18,05,0100016,219,82510,01,045125
2С518А18,05,0100016,219,82510,01,045125
КС522А22,05,0100019,824,22510,01,037125
2С522А22,05,0100019,824,22510,01,037125
2С522А522,05,0100019,824,2251,037125
КС524А24,05,0100022,825,23010,01,033125
2С524А24,05,0100022,825,23010,01,033125
КС527А27,05,0100024,329,74010,01,030125
2С527А27,05,0100024,329,74010,01,030125
2С530А30,05,0100028,531,54510,01,027125
КС533А33,05,064030364010,03,017125
2С536А36,05,0100034,237,85010,01,023125
КС551А51,01,51000485420012,01,014,6125
2С551А51,01,51000485420012,01,014,6125
КС591А91,01,51000869640012,01,08,8125
2С591А91,01,51000869640012,01,08,8125
КС600А1001,510009510545012,01,08,1125
2С600А1001,510009510545012,01,08,1125
КС620А12050,0500010813215020,05,042125
КС630А13050,0500011714318020,05,038125
КС650А15025,0500013616427020,02,533125
КС680А18025,0500016219833020,02,528125
2С920А12050,0500010813210016,05,042125
2С930А13050,0500011714312016,05,038125
2С950А15025,0500013616417016,02,533125
2С980А18025,0500016219822016,02,528125

Uст.ном.номинальное напряжение стабилизации стабилитрона;
Iст.ном.номинальный ток стабилизации стабилитрона;
Рмакс.максимально-допустимая рассеиваемая мощность на стабилитроне;
Uст.напряжение стабилизации стабилитрона;
rст.дифференциальное сопротивление стабилитрона;
aст.температурный коэффициент стабилизации стабилитрона;
Iст.ток стабилизации стабилитрона;
Тк.макс.максимально-допустимая температура корпуса стабилитрона;
Тп.макс.максимально-допустимая температура перехода стабилитрона.

www.ec-centre.com.ua

Стабилитроны. Справочник.

Стабилитроны. Справочник.

Zener diodes

Для удобства можно воспользоваться поиском на странице (Ctrl+F).
Список в алфавитном порядке есть здесь.

Внимание!
Буквенный индекс A, B, C, D в конце маркировки характеризует разброс параметров по напряжению стабилизации.
В отдельных случаях индекс может указывать на температурный коэффициент.
Подробности необходимо уточнять в приложенной технической документации.

POWER(Watts)

Volt0.25-0.4W0.4-0.5W0.5W1.0W1.5W5.0W10.0W50.0W
1.81N46141N4678 1N4614,A
2.01N46151N4679 1N4615,A
2.21N46161N4680 1N4616,A
2.41N46171N4681 1N4617,A
2.4IN4370,A
2.41N5221,A
2.41N5837,A
2.41N5985,A
2.51N5222,A
2.51N5838,A
2.61N702
2.71N46181N46821N4371,A
2.7 1N702A1N5223,A
2.71N5839,A
2.71N5986,A
2.81N5224,A
2.81N5840,A
3.01N46191N4683 1N4372,A
3.01N5225,A
3.01N5841,A
3.01N5987,A
3.31N46201N4684 1N746,A 1N3821,A1N5913 1N5333,A,B
3.31N5226,A 1N4728,A
3.31N5518 1N5842,A
3.31N5988,A
3.61N46211N4685 1N747,A 1N3822,A1N5914 1N5334,A,B
3.6 1N703A1N55191N5227,A 1N4729,A
3.61N5843,A
3.61N5989,A
3.91N46221N4686 1N748,A 1N3823,A1N5915 1N5335,A,B1N3993,A,B 1N4549,A,B
3.91N55201N5228,A 1N4730,A 1N4557,A,B
3.91N5844,A
3.91N5990,A
4.11N704
4.31N46231N4687 1N749,A 1N3824,A1N5916 1N5336,A,B1N3994,A,B 1N4550,A,B
4.31N704A 1N55211N5229,A 1N4731,A1N4558,A,B
4.31N5845,A
4.31N5991,A
4.71N4624 1N5728,B1N750,A 1N3825,A1N5917 1N5337,A,B1N3995,A,B 1N4551,A,B
4.71N55221N5230,A 1N4732,A1N4559,A,B
4.71N705 1N5846,A
4.71N4688 1N5992,A
5.11N4625 1N5729,B1N751,A 1N3826,A1N5918 1N5338,A,B1N3996,A,B 1N4552,A,B
5.11N55231N5231,A 1N4733,A1N4560,A,B
5.11N705A1N4689 1N5847,A
5.11N5993,A
5.61N708 1N5730,B1N752,A 1N3827,A1N5919 1N5339,A,B1N3997,A,B 1N4553,A,B
5.61N4626 1N55241N5232,A 1N4734,A1N4561,A,B
5.61N46901N5848,A
5.61N5994,A
5.81N706
6.0 1N706A1N5233,A 1N5340,A,B
6.01N5849,A
6.21N709 1N5731,B1N753,A 1N3828,A1N5920 1N5341,A,B1N3998,A,B 1N4554,A,B
6.21N4627 1N821,A1N5234,A 1N4735,A1N4562,A,B
6.2MZ6051N823,A 1N5850,A
6.2MZ6101N825,A 1N5995,A
6.2MZ6201N827,A 1N4691
6.2MZ6401N829,A
6.21N5525
6.41N4565-84,A
6.81N4099 1N5732,B1N754,A 1N3016,A,B1N3785,A,B 1N5342,A,B1N2970,A,B 1N2804,A,B
6.81N7101N4692 1N957B 1N3829,A1N5921 1N3999,A,B1N3305,A,B
6.81N55261N5235,A 1N4736,A 1N4555,A,B
6.81N5851,A 1N4563,A,B
6.81N5996,A
7.11N707
7.51N4100 1N5733,B1N755,A 1N3017,A,B1N3786,A,B 1N5343,A,B1N2971,A,B 1N2805,A,B
7.51N7111N4693 1N958B 1N3830,A1N5922 1N3940,A,B1N3306,A,B
7.51N55271N5236,A 1N4737,A 1N4556,A,B
7.51N5852,A 1N4564,A,B
7.51N5997,A
8.21N712 1N5734,B1N756,A 1N3018,A,B1N3787,A,B 1N5344,A,B1N2972,A,B 1N2806,A,B
8.21N41011N4694 1N959B 1N4738,A1N5923 1N3307,A,B
8.21N5528 1N5237,A
8.21N5853,A
8.21N5998,A
8.4IN3154-57,A
8.51N4775-84,A 1N5238,A
8.51N5854,A
8.71N41021N4695 1N5345,A,B
8.8
9.01N935-8;A,B
9.11N4103 1N5735,B1N757,A 1N3019,A,B1N3788,A,B 1N5346,A,B1N2973,A,B 1N2807,A,B
9.11N7131N4696 1N960B 1N4739,A1N5924 1N3308,A,B
9.11N55291N5239,A
9.11N5855,A
9.11N5999,A
10.01N4104 1N5736,B1N758,A 1N3020,A,B1N3789,A,B 1N5347,A,B1N2974,A,B 1N2808,A,B
10.01N7141N4697 1N961B 1N4740,A1N5925 1N3309,A,B
10.01N5530 1N5240,A
10.01N5856,A
10.01N6000,A
11.01N715 1N5737,B1N962B 1N3021,A,B1N3790,A,B 1N5348,A,B1N2975,A,B 1N2809,A,B
11.01N41051N4698 1N4741,A1N5926 1N3310,A,B
11.01N5531 1N5241,A
11.01N5857,A
11.01N6001,A
11.71N941-5;A,B
11.7
12.01N716 1N5738,B1N759,A 1N3022,A,B1N3791,A,B 1N5349,A,B1N2976,A,B 1N2810,A,B
12.01N41061N4699 1N963B 1N4742,A1N5927 1N3311,A,B
12.01N5532 1N5242,A
12.01N5858,A
12.01N6002,A
13.01N4107 1N5739,B1N964B 1N3023,A,B1N3792,A,B 1N5350,A,B1N2977,A,B 1N2811,A,B
13.01N7171N5533 1N5243,A 1N4743,A1N5928 1N3312,A,B
13.01N4700 1N5859,A
13.01N6003,A
14.01N4108 1N55341N5244,A 1N5351,A,B1N2978,A,B 1N2812,A,B
14.01N4701 1N5860,A 1N3313,A,B
15.01N4109 1N5740,B1N965B 1N3024,A,B1N3793,A,B 1N5352,A,B1N2979,A,B 1N2813,A,B
15.01N718 1N55351N5245,A 1N4744,A1N5929
15.01N4702 1N5861,A 1N3314,A,B
15.01N6004,A
16.01N4110 1N5741,B1N966B 1N3025,A,B1N3794,A,B 1N5353,A,B1N2980,A,B 1N2814,A,B
16.01N719 1N55361N5246,A 1N4745,A1N5930 1N3315,A,B
16.01N4703 1N5862,A
16.01N6005,A
17.01N4111 1N55371N5247,A 1N5354,A,B1N2981,A,B 1N2815,A,B
17.01N4704 1N5863,A 1N3316,A,B
18.01N4112 1N5742,B1N967B 1N3026,A,B1N3795,A,B 1N5355,A,B1N2982,A,B 1N2816,A,B
18.01N720 1N55381N5248,A 1N4746,A1N5931 1N3317,A,B
18.01N4705 1N5864,A
18.01N6006,A
19.01N4113 1N55391N5249,A 1N5356,A,B1N2983,A,B 1N2817,A,B
19.01N47061N5865,A 1N3318,A,B
20.01N4114 1N5743,B1N968B 1N3027,A,B1N3796,A,B 1N5357,A,B1N2984,A,B 1N2818,A,B
20.01N721 1N55401N5250,A 1N4747,A1N5932 1N3319,A,B
20.01N4707 1N5866,A
20.01N6007,A
22.01N4115 1N5744,B1N969B 1N3028,A,B1N3797,A,B 1N5358,A,B1N2985,A,B 1N2819,A,B
22.01N722 1N55411N5251,A 1N4748,A1N5933
22.01N4708 1N5867,A 1N3320,A,B
22.01N6008,A
24.01N4116 1N55421N970B 1N3029,A,B1N3798,A,B 1N5359,A,B1N2986,A,B 1N2820,A,B
24.01N7231N5252,A 1N4749,A1N5934 1N3321,A,B
24.01N5745,B1N5868,A
24.01N4709 1N6009,A
25.01N4117 1N55431N5253,A 1N5360,A,B1N2987,A,B 1N2821,A,B
25.01N4710 1N5869,A 1N3322,A,B
27.01N41181N971B 1N3030,A,B1N3799,A,B 1N5361,A,B1N2988,A,B 1N2822,A,B
27.01N7241N5254,A 1N4750,A1N5935 1N3323,A,B
27.01N5746,B1N5870,A
27.01N4711 1N6010,A
28.01N4119 1N55441N5255,A 1N5362,A,B
28.01N4712 1N5871,A
30.01N41201N972B 1N3031,A,B1N3800,A,B 1N5363,A,B1N2989,A,B 1N2823,A,B
30.01N725 1N55451N5256,A 1N4751,A1N5936 1N3324,A,B
30.01N5747,B 1N5872,A
30.01N4713 1N6011,A
33.01N41211N973B 1N3032,A,B1N3801,A,B 1N5364,A,B1N2990,A,B 1N2824,A,B
33.01N726 1N55461N5257,A 1N4752,A1N5937 1N3325,A,B
33.01N5748,B 1N5873,A
33.01N4714 1N6012,A
36.01N4122 1N5749,B1N974B 1N3033,A,B1N3802,A,B 1N5365,A,B1N2991,A,B 1N2825,A,B
36.01N7271N5258,A 1N4753,A1N5938 1N3326,A,B
36.01N4715 1N5874,A
36.01N6013,A
39.01N4123 1N5750,B1N975B 1N3034,A,B1N3803,A,B 1N5366,A,B1N2992,A,B 1N2826,A,B
39.01N7281N5259,A 1N4754,A1N5939 1N3327,A,B
39.01N4716 1N5875,A
39.01N6014,A
43.01N4124 1N5751,B1N976B 1N3035,A,B1N3804,A,B 1N5367,A,B1N2993,A,B 1N2827,A,B
43.01N7291N5260,A 1N4755,A1N5940 1N3328,A,B
43.01N4717 1N5876,A
43.01N6015,A
45.01N2994,A,B 1N2828,A,B
45.0 1N3329,A,B
47.01N4125 1N5752,B1N977B 1N3036,A,B1N3805,A,B 1N5368,A,B1N2995,A,B 1N2829,A,B
47.01N7301N5261,A 1N4756,A1N5941 1N3330,A,B
47.01N5877,A
47.01N6016,A
50.01N2996,A,B 1N2830,A,B
50.0 1N3331,A,B
51.01N4126 1N5753,B1N978B 1N3037,A,B1N3806,A,B 1N5369,A,B11N2997,A,B 1N2831,A,B
51.01N7311N5262,A 1N4757,A1N5942 1N3332,A,B
51.01N5878,A
51.01N6017,A
52.01N2998,A,B 1N3333,A,B
56.01N4127 1N5754,B1N979B 1N3038,A,B1N3807,A,B 1N53670,A,B1N2999,A,B 1N2832,A,B
56.01N7321N5263,A 1N4758,A1N5943 1N3334,A,B
56.01N5879,A
56.01N6018,A
60.01N41281N5264,A 1N5371,A,B
60.01N5880,A
62.01N4129 1N5755,B1N980B 1N3039,A,B1N3808,A,B 1N5372,A,B1N3000,A,B 1N2833,A,B
62.01N7331N5265,A 1N4759,A1N5944 1N3335,A,B
62.01N5881,A
62.01N6019,A
68.01N4130 1N5756,B1N981B 1N3040,A,B1N3809,A,B 1N5373,A,B1N3001,A,B 1N2834,A,B
68.01N7341N5266,A 1N4760,A1N5945 1N3336,A,B
68.01N6020,A
75.01N4131 1N5757,B1N982B 1N3041,A,B1N3810,A,B 1N5374,A,B1N3002,A,B 1N2835,A,B
75.01N7351N5267,A 1N4761,A1N5946 1N3337,A,B
75.01N6021,A
82.01N41321N983B 1N3042,A,B1N3811,A,B 1N5375,A,B1N3003,A,B 1N2836,A,B
82.01N7361N5268,A 1N4762,A1N5947 1N3338,A,B
82.01N6022,A
87.01N41331N5269,A 1N5376,A,B
91.01N41341N984B 1N3043,A,B1N3812,A,B 1N5377,A,B1N3004,A,B 1N2837,A,B
91.01N5270,A 1N4763,A1N5948 1N3339,A,B
91.01N6023,A
100.01N41351N985B 1N3044,A,B1N3813,A,B 1N5378,A,B1N3005,A,B 1N2838,A,B
100.01N5271,A 1N4764,A1N5949 1N3340,A,B
100.01N6024,A
105.01N3006,A,B 1N2839,A,B
105.0 1N3341,A,B
110.01N986B 1N3045,A,B1N3814,A,B 1N5379,A,B1N3007,A,B 1N2840,A,B
110.01N5272,A1M110ZS10 1N5950 1N3342,A,B
110.01N6025,A
120.01N987B 1N3046,A,B 1N3815,A,B 1N5380,A,B1N3008,A,B 1N2841,A,B
120.01N5273,A1M120ZS10 1N5951 1N3343,A,B
120.01N6026,A
130.01N988B 1N3047,A,B1N3816,A,B 1N5381,A,B1N3009,A,B 1N2842,A,B
130.01N5274,A1M130ZS10 1N5952 1N3344,A,B
130.01N6027,A
140.01N5275,A 1N5382,A,B1N3010,A,B 1N3345,A,B
150.01N989B 1N3048,A,B1N3817,A,B 1N5383,A,B1N3011,A,B 1N2843,A,B
150.01N5276,A1M150ZS10 1N5953 1N3346,A,B
150.01N6028,A
160.01N990B 1N3049,A,B1N3818,A,B 1N5384,A,B1N3012,A,B 1N2844,A,B
160.01N5277,A1M160ZS10 1N5954 1N3347,A,B
160.01N6029,A
170.01N5278,A1M170ZS10 1N5385,A,B
175.01N3013,A,B 1N3348,A,B
180.01N991B 1N3050,A,B1N3819,A,B 1N5386,A,B1N3014,A,B 1N2845,A,B
180.01N5279,A1M180ZS10 1N5955 1N3349,A,B
180.01N6030,A
190.01N5280,A 1N5387,A,B
200.01N992B 1N3051,A,B1N3820,A,B 1N5388,A,B1N3015,A,B 1N2840,A,B
200.01N5281,A1M200ZS10 1N5956 1N3350,A,B
200.01N6031,A

Побликации основаны на данных из открытых источников.

tel-spb.ru

3. Аналог мощного стабилитрона | Техническая библиотека lib.qrz.ru


 
 

 
 
 
 
 
        Для стабилизации напряжения питания нагрузки нередко пользуются простейшим стабилизатором — параметрическим (рис. 1), в котором питание от выпрямителя поступает через балластный резистор, а параллельно нагрузке включают стабилитрон.
        Подобный стабилизатор работоспособен при токах нагрузки, не превышающих максимального тока стабилизации для данного стабилитрона. А если ток нагрузки значительно больше, пользуются более мощным стабилитроном, например, серии Д815, допускающим ток стабилизации 1…1,4 А.
        При отсутствии такого стабилитрона подойдет маломощный, но использовать его нужно в паре с мощным транзистором, как показано на рис. 2. В итоге получается аналог мощного стабилитрона, обеспечивающий на нагрузке достаточно стабильное напряжение даже при токе 2 А, хотя максимальный ток стабилизации указанного на схеме стабилизатора КС147А составляет 58 мА.
        Работает аналог так. Пока питающее напряжение, поступающее от выпрямителя, меньше напряжения пробоя стабилитрона, транзистор закрыт, ток через аналог незначительный (прямая горизонтальная ветвь вольт- амперной характеристики аналога, приведенной на рис. 4). При увеличении питающего напряжения стабилитрон пробивается, через него начинает протекать ток и транзистор приоткрывается (изогнутая часть характеристики) Дальнейшее увеличение питающего напряжения приводит к резкому росту тока через стабилитрон и транзистор, а значит, к стабилизации выходного напряжения на определенном значении (вертикальная ветвь характеристики), как и в обычном параметрическом стабилизаторе.
        Эффект стабилизации достигается благодаря тому, что в режиме пробоя стабилитрон обладает малым дифференциальным сопротивлением и с коллектора транзистора на его базу осуществляется глубокая отрицательная обратная связь. Поэтому при уменьшении выходного напряжения будет уменьшаться ток через стабилитрон и базу транзистора, что приведет к значительно большему (в h21Э раз) уменьшению коллекторного тока, а значит, к увеличению выходного напряжения. При увеличении же выходного напряжения будет наблюдаться обратный процесс.
        Значение стабилизированного выходного напряжения определяют суммированием напряжения стабилизации стабилитрона с напряжением эмиттерного перехода открытого транзистора (» 0,7 В для кремниевого транзистора и » 0,3 В для германиевого). Максимальный же ток стабилизации аналога будет практически в h21Э раз превышать такой же параметр используемого стабилитрона. Соответственно во столько же раз будет больше и мощность рассеивания на транзисторе по сравнению с мощностью на стабилитроне.
        Из приведенных соотношений нетрудно сделать вывод, что статический коэффициент передачи мощного транзистора должен быть не менее частного от деления максимального тока потребления нагрузки к максимальному току стабилизации стабилитрона. Максимально допустимый ток коллектора транзистора и напряжение между коллектором и эмиттером должны превышать соответственно заданный ток стабилизации аналога и выходное напряжение.
        При использовании транзистора структуры р-п-р его следует подключать в соответствии с приведенной на рис. 3 схемой. В этом варианте транзистор можно укрепить непосредственно на шасси питаемой конструкции, а остальные детали аналога смонтировать на выводах транзистора.
        Для снижения пульсаций выходного напряжения и уменьшения дифференциального сопротивления аналога параллельно выводам стабилитрона можно включить оксидный конденсатор емкостью 100…500 мкФ.
        В заключение немного о температурном коэффициенте напряжения (ТКН) аналога. При использовании прецизионных стабилитронов серий Д818, КС191, ТКН аналога будет значительно хуже ТКН стабилитрона. Если применен стабилитрон с напряжением стабилизации более 16 В, ТКН аналога будет примерно равен ТКН стабилитрона, а со стабилитронами Д808 — Д814 ТКН аналога улучшится.

lib.qrz.ru

Аналог мощного стабилитрона как тестовая нагрузка для проверки зарядных устройств автомобильных аккумуляторов


При переделке компьютерных импульсных блоков питания (далее – ИБП) под зарядные устройства для автомобильных аккумуляторов, готовые изделия необходимо чем-то нагружать. Сначала это была старая аккумуляторная батарея с автомобильной лампой 12В 40/45Вт.

Переделанные ИБП держались под максимальной нагрузкой в течении дня. Но после изготовления десятого устройства аккумулятор умер, замкнули между собой пластины. Попытка нагружать ИБП мощными лампами или резисторами не радовала, так как при различных токах нагрузки на выходе получаем различное напряжение, не удобно настраивать ИБП.

Поэтому принято решение изготовить аналог мощного стабилитрона с регулируемым напряжением стабилизации!

Содержание / Contents


Резистором R6 можно регулировать напряжение стабилизации от 6 до 16 В.

Было изготовлено два таких устройства. В первом варианте в качестве транзисторов VT1 и VT2 применены КТ803, но внутреннее сопротивление было слишком велико, так при токе 2 А напряжение стабилизации составило 12 В, а при 8 А – 16 В.

Во втором варианте использованы составные транзисторы КТ827, так при токе 2 А напряжение стабилизации составило 12 В, а при 10 А – 12,4 В.

Коллекторы транзисторов VT1 и VT2 электрически можно соединить с корпусом. Вентилятор М1 служит для охлаждения радиатора, на котором установлены транзисторы VT1 и VT2, при замыкании контактов выключателя SA1 увеличивается производительность вентилятора. Светодиод HL1 служит для индикации работы устройства.

Само устройство собрано в корпусе от компьютерного блока питания, использован штатный вентилятор М1, транзисторы VT1 и VT2 установлены на радиаторе площадью не менее 250 см кв. Диод VD1 на ток 10 – 20 А служит для защиты схемы от переполюсовки. Стабилитрон VD1 на напряжение стабилизации 3 – 6 В.

После проверки правильности монтажа, аналог мощного стабилитрона подключают к источнику тока на 1 – 2 А и резистором R6 устанавливают напряжение для разряженного кислотного аккумулятора, скажем 11 В. Увеличивают ток до 10 – 12 А, при этом напряжение не должно возрасти более чем на 0,5 В.
Внешний вид устройства

UR5YW, дядя Вася, г. Черновцы

Василий Мельничук (korjavy)

Украина, г. Черновцы

Когда то был связистом.

 

datagor.ru

Стабилитроны и стабисторы большой мощности

Стабилитроны и стабисторы малой мощности

Стабилитроны прецизионные

Таблица 12

Тип
прибора
Предельные значения
параметров при Т=25°С
Значения параметров
при Т=25°С
Тк.мах
п.)
°С
Рису-
нок
Uст.ном.Bпри
Iст.ном.
mA
Рмакс.mBtUст.rст.Omaст.
10-2
%/°С
Iст.
мин
B
мах
B
мин
mA
мах
mA
123456789101112
Д815А5,6100080005,06,21,04,5501400125
Д815Б6,8100080006,17,51,26,0501150125
Д815В8,2100080007,49,11,59,050950125
Д815Г10,050080009,0111,88,025800125
Д815Д12,0500800010,813,32,09,025650125
Д815Е15,0500800013,316,42,510,025550125
Д815Ж18,0500800016,219,83,011,025450125
Д815И4,7100080004,25,20,814,0501400125
Д816А22,0150500019,624,27,012,010230125
Д816Б27,0150500024,229,58,012,010180125
Д816В33,0150500029,5361012,010150125
Д816Г36,0150500035,0431212,010130125
Д816Д47,0150500042,551,51512,010110125
Д817А56,050,0500050,551,53514,05,090125
Д817Б68,050,0500061,0754014,05,075125
Д817В82,050,0500074,0904514,05,060125
Д817Г100,050,0500090,01105014,05,050125
КС406А8,215,05007,78,76,59,00,53585
КС406Б10,012,05009,410,68,511,00,252885
2С411А8,05,03407,08,56,07,03,040125
2С411Б9,05,034089,5108,03,036125
КС407А3,310,05003,13,528-8,01,010085
КС407Б3,920,05003,74,123-7,01,08385
КС407В4,720,05004,4519-3,01,06885
КС407Г5,120,05004,85,417±2,01,05985
КС407Д6,818,05006,47,24,55,01,04285
КС409А5,65,04005,35,9202…41,04885
КС412А6,25,04005,86,610-1…61,055125
КС433А3,360,010002,973,6325-10,03,0229125
2С433А3,360,010002,973,6314-10,03,0229125
КС439А3,951,010003,514,2925-10,03,0212125
2С439А3,951,010003,514,2912-10,03,0212125
КС447А4,743,010004,235,1718-8…33,0190125
2С447А4,743,010004,235,1710-8…33,0190125
КС456А5,636,010005,046,167,05,03,0167125
2С456А5,636,010005,046,167,05,03,0167125
КС468А6,830,010006,127,485,06,53,0119125
2С468А6,829,010006,127,485,06,53,0142125
КС482А8,25,010007,49,0258,01,096125
2С482А8,25,010007,49,0258,01,096125
КС508А12,010,550011,412,71111,00,252385
КС508Б15,010,550013,815,61611,00,251885
КС508В16,07,850015,317,11711,00,251785
КС508Г18,07,050016,819,12111,00,251585
КС508Д24,05,250022,825,63312,00,251185
КС509А15,015,0130013,815,6159,00,54285
КС509Б18,015,0130018,619,1209,00,53585
КС509В20,010,0130018,821,2249,00,53185
КС510А10,05,010009,0112510,01,079125
2С510А10,05,010009,0112510,01,079125
КС512А12,05,0100010,813,22510,01,067125
2С512А12,05,0100010,813,22510,01,067125
КС515А15,05,0100013,516,52510,01,053125
2С515А15,05,0100013,516,52510,01,053125
2С516А10,05,03409,010,5129,03,032125
2С516Б11,05,03401012159,53,029125
2С516В13,05,034011,514189,53,024125
КС518А18,05,0100016,219,82510,01,045125
2С518А18,05,0100016,219,82510,01,045125
КС522А22,05,0100019,824,22510,01,037125
2С522А22,05,0100019,824,22510,01,037125
2С522А522,05,0100019,824,2251,037125
КС524А24,05,0100022,825,23010,01,033125
2С524А24,05,0100022,825,23010,01,033125
КС527А27,05,0100024,329,74010,01,030125
2С527А27,05,0100024,329,74010,01,030125
2С530А30,05,0100028,531,54510,01,027125
КС533А33,05,064030364010,03,017125
2С536А36,05,0100034,237,85010,01,023125
КС551А51,01,51000485420012,01,014,6125
2С551А51,01,51000485420012,01,014,6125
КС591А91,01,51000869640012,01,08,8125
2С591А91,01,51000869640012,01,08,8125
КС600А1001,510009510545012,01,08,1125
2С600А1001,510009510545012,01,08,1125
КС620А12050,0500010813215020,05,042125
КС630А13050,0500011714318020,05,038125
КС650А15025,0500013616427020,02,533125
КС680А18025,0500016219833020,02,528125
2С920А12050,0500010813210016,05,042125
2С930А13050,0500011714312016,05,038125
2С950А15025,0500013616417016,02,533125
2С980А18025,0500016219822016,02,528125

Возможно, вам это будет интересно:

Постоянная ссылка на это сообщение: http://meandr.org/archives/3221

meandr.org

Выпрямительные диоды: устройство, конструктивные особенности, характеристики

Основное предназначение выпрямительных диодов – преобразование напряжения. Но это не единственная сфера применения данных полупроводниковых элементов. Их устанавливают в цепи коммутации и управления, используют в каскадных генераторах и т.д. Начинающим радиолюбителям будет интересно узнать, как устроены эти полупроводниковые элементы, а также их принцип действия. Начнем с общих характеристик.

Устройство и конструктивные особенности

Основной элемент конструкции – полупроводник. Это пластина кристалла кремния или германия, у которого имеются две области р и n проводимости. Из-за этой особенности конструкции она получила название плоскостной.

При изготовлении полупроводника обработка кристалла производится следующим образом: для получения поверхности р-типа ее обрабатывают расплавленным фосфором, а р-типа – бором, индием или алюминием. В процессе термообработки происходит диффузия этих материалов и кристалла. В результате образуется область с р-n переходом между двумя поверхностями с различной электропроводимостью. Полученный таким образом полупроводник устанавливается в корпус. Это обеспечивает защиту кристалла от посторонних факторов воздействия и способствует теплоотводу.

Конструкция (1), внешний вид (2) и графическое отображение выпрямительного диода(3)

Обозначения:

  • А – вывод катода.
  • В – кристалладержатель (приварен к корпусу).
  • С – кристалл n-типа.
  • D – кристалл р-типа.
  • E – провод ведущий к выводу анода.
  • F – изолятор.
  • G – корпус.
  • H – вывод анода.

Как уже упоминалось, в качестве основы р-n перехода используются кристаллы кремния или германия. Первые применяются значительно чаще, это связано с тем, что у германиевых элементов величина обратных токов значительно выше, что существенно ограничивает допустимое обратное напряжение (оно не превышает 400 В). В то время как у кремниевых полупроводников эта характеристика может доходить до 1500 В.

Помимо этого у германиевых элементов значительно уже диапазон рабочей температуры, он варьируется в пределах от -60°С до 85°С. При превышении верхнего температурного порога резко увеличивается обратный ток, что отрицательно отражается на эффективности устройства. У кремниевых полупроводников верхний порог порядка 125°С-150°С.

Классификация по мощности

Мощность элементов определяется максимально допустимым прямым током. В соответствии этой характеристики принята следующая классификация:

  • Слаботочные выпрямительные диоды, они используются в цепях с током не более 0,3 А. Корпус таких устройств, как правило, выполнен из пластмассы. Их отличительные особенности – малый вес и небольшие габариты. Выпрямительные диоды малой мощности
  • Устройства, рассчитанные на среднюю мощность, могут работать с током в диапазоне 0,3-10 А. Такие элементы, в большинстве своем, изготавливаются корпусе из металла и снабжены жесткими выводами. На одном один из них, а именно на катоде, имеется резьба, позволяющая надежно зафиксировать диод на радиаторе, используемого для отвода тепла. Выпрямительный диод средней мощности
  • Силовые полупроводниковые элементы, они рассчитаны на прямой ток свыше 10 А. Производятся такие устройства в металлокерамических или металлостеклянных корпусах штыревого (А на рис. 4) или таблеточного типа (В). Рис. 4. Выпрямительные диоды высокой мощности

Перечень основных характеристик

Ниже приведена таблица, с описанием основных параметров выпрямительных диодов. Эти характеристики можно получить из даташита (технического описания элемента). Как правило, большинство радиолюбителей к этой информации обращаются в тех случаях, когда указанный в схеме элемент недоступен, что требует найти ему подходящий аналог.

Таблица основных характеристик выпрямительных диодов

Заметим, что в большинстве случаев, если требуется найти аналог тому или иному диоду, первых пяти параметров из таблицы будет вполне достаточно. При этом желательно учесть диапазон рабочей температуры элемента и частоту.

Принцип работы

Проще всего объяснить принцип действия выпрямительных диодов на примере. Для этого смоделируем схему простого однополупериодного выпрямителя (см. 1 на рис. 6), в котором питание поступает от источника переменного тока с напряжением UIN (график 2) и идет через VD на нагрузку R.

Рис. 6. Принцип работы однодиодного выпрямителя

Во время положительного полупериода, диод находится в открытом положении и пропускает через себя ток на нагрузку. Когда приходит очередь отрицательного полупериода, устройство запирается, и питание на нагрузку не поступает. То есть происходит как бы отсечение отрицательной полуволны (на самом деле это не совсем верно, поскольку при данном процессе всегда имеется обратный ток, его величина определяется характеристикой Iобр).

В результате, как видно из графика (3), на выходе мы получаем импульсы, состоящие из положительных полупериодов, то есть, постоянный ток. В этом и заключается принцип работы выпрямительных полупроводниковых элементов.

Заметим, что импульсное напряжение, на выходе такого выпрямителя подходить только для питания малошумных нагрузок, примером может служить зарядное устройство для кислотного аккумулятора фонарика. На практике такую схему используют разве что китайские производители, с целью максимального удешевления своей продукции. Собственно, простота конструкции является единственным ее полюсом.

К числу недостатков однодиодного выпрямителя можно отнести:

  • Низкий уровень КПД, поскольку отсекаются отрицательные полупериоды, эффективность устройства не превышает 50%.
  • Напряжение на выходе примерно вдвое меньше, чем на входе.
  • Высокий уровень шума, что проявляется в виде характерного гула с частотой питающей сети. Его причина – несимметричное размагничивание понижающего трансформатора (собственно именно поэтому для таких схем лучше использовать гасящий конденсатор, что также имеет свои отрицательные стороны).

Заметим, что эти недостатки можно несколько уменьшить, для этого достаточно сделать простой фильтр на базе высокоемкостного электролита (1 на рис. 7).

Рис. 7. Даже простой фильтр позволяет существенно снизить пульсации

Принцип работы такого фильтра довольно простой. Электролит заряжается во время положительного полупериода и разряжается, когда наступает черед отрицательного. Емкость при этом должна быть достаточной для поддержания напряжения на нагрузке. В этом случае импульсы несколько сгладятся, примерно так, как продемонстрировано на графике (2).

Приведенное решение несколько улучшит ситуацию, но ненамного, если запитать от такого однополупериодного выпрямителя, например, активные колонки компьютера, в них будет слышаться характерный фон. Для устранения проблемы потребуются более радикальное решение, а именно диодный мост. Рассмотрим принцип работы этой схемы.

Устройство и принцип работы диодного моста

Существенно отличие такой схемы (от однополупериодной) заключается в том, что напряжение на нагрузку подается в каждый полупериод. Схема включения полупроводниковых выпрямительных элементов продемонстрирована ниже.

Принцип работы диодного моста

Как видно из приведенного рисунка в схеме задействовано четыре полупроводниковых выпрямительных элемента, которые соединены таким образом, что при каждом полупериоде работают только двое из них. Распишем подробно, как происходит процесс:

  • На схему приходит переменное напряжение Uin (2 на рис. 8). Во время положительного полупериода образуется следующая цепь: VD4 – R – VD2. Соответственно, VD1 и VD3 находятся в запертом положении.
  • Когда наступает очередность отрицательного полупериода, за счет того, что меняется полярность, образуется цепь: VD1 – R – VD3. В это время VD4 и VD2 заперты.
  • На следующий период цикл повторяется.

Как видно по результату (график 3), в процессе задействовано оба полупериода и как бы не менялось напряжение на входе, через нагрузку оно идет в одном направлении. Такой принцип работы выпрямителя называется двухполупериодным. Его преимущества очевидны, перечислим их:

  • Поскольку задействованы в работе оба полупериода, существенно увеличивается КПД (практически вдвое).
  • Пульсация на выходе мостовой схемы увеличивает частоту также вдвое (по сравнению с однополупериодным решением).
  • Как видно из графика (3), между импульсами уменьшается уровень провалов, соответственно сгладить их фильтру будет значительно проще.
  • Величина напряжения на выходе выпрямителя приблизительно такая же, как и на входе.

Помехи от мостовой схемы незначительны, и становятся еще меньше при использовании фильтрующей электролитической емкости. Благодаря этому такое решение можно использовать в блоках питания, практически, для любых радиолюбительских конструкций, в том числе и тех, где используется чувствительная электроника.

Заметим, совсем не обязательно использовать четыре выпрямительных полупроводниковых элемента, достаточно взять готовую сборку в пластиковом корпусе.

Диодный мост в виде сборки

Такой корпус имеет четыре вывода, два на вход и столько же на выход. Ножки, к которым подключается переменное напряжение, помечаются знаком «~» или буквами «AC». На выходе положительная ножка помечается символом «+», соответственно, отрицательная как «-».

На принципиальной схеме такую сборку принято обозначать в виде ромба, с расположенным внутри графическим отображением диода.

На вопрос что лучше использовать сборку или отдельные диоды нельзя ответить однозначно. По функциональности между ними нет никакой разницы. Но сборка более компактна. С другой стороны, при ее выходе из строя поможет только полная замена. Если же в этаком случае используются отдельные элементы, достаточно заменить вышедший из строя выпрямительный диод.

www.asutpp.ru

Схема аналога стабилитрона

радиоликбез

Рассмотрена возможность практического применения схемы замещения стабилитрона с регулировкой напряжения стабилизации и температурной коррекции его параметров в зависимости от внешних условий.

Предложена практическая схема, с помощью которой удалось решить проблему стабилизации низких напряжений с возможностью подстройки.

Рис. 1 Схема низковольтного стабилитрона с термокомпенсацией

Обычные стабилитроны, если не предусмотрена специальная компенсация, всегда имеют общий для них недостаток: при увеличении тока смещения стабилитрона положительный температурный коэффициент также увеличивается. К тому же температурный уход может быть отрицательным или положительным (в зависимости от напряжения на стабилитроне и конкретного значения тока смещения) даже для одного и того же диода на различных участках его характеристики. Кроме того, для имеющихся стабилитронов напряжения менее 5 В эффект стабилизации выражен не очень ярко, так как недостаточно малое динамическое сопротивление на участке стабилизации приводит к большому изменению напряжения в полном диапазоне рабочих токов. Предлагаемая схема — попытка решить эти проблемы. Диапазон токов смещения 1-20 мА, он может быть расширен при использовании в качестве Q2 более мощного транзистора. Напряжение стабилизации этого «стабилитрона» может изменяться от 1,5 до 6,5 В. Это напряжение определяется выражением:

Vz = 0,60 + (R2 + R3) 0,375 / R1.

При любых положениях потенциометра R2 напряжение изменяется не более чем на 1% при изменении тока смещения от 2 до 20 мА. Напряжение эмиттер-база транзистора Q1 используется как опорное, температурная зависимость которого компенсируется германиевым диодом D1 типа 1N34А. В результате на резисторе R1 устанавливается стабильное падение напряжения величиной -0,375 В при токе через резисторный делитель с постоянной величиной 0,5 мА. Итоговая зависимость температурного коэффициента является сложной, но он не превышает -2 мВ/°С, благодаря взаимодействию диода и транзисторов. Составной транзистор Q2 пропускает через себя весь ток смещения за исключением 650 мкА, необходимых для смещения опорного элемента.

На рисунке 2 представлена схема на отечестпенных элементах.

Рис. 2

Примечание. Все резисторы имеют мощность 1/8 Вт и допуск 1%.

Смотрите также: Низковольтный регулируемый стабилитрон

 


radiopolyus.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *