8-900-374-94-44
[email protected]
Slide Image
Меню

Синус c – Какие команды в С++ для вычисления синуса, косинуса, тангенса?

Содержание

Синус sin x косинус cos x

Справочные данные по тригонометрическим функциям синус (sin x) и косинус (cos x). Геометрическое определение, свойства, графики, формулы. Таблица синусов и косинусов, производные, интегралы, разложения в ряды, секанс, косеканс. Выражения через комплексные переменные. Связь с гиперболическими функциями.

Геометрическое определение синуса и косинуса




|BD| -  длина дуги окружности с центром в точке A.
α - угол, выраженный в радианах.

Определение
Синус (sin α) – это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины противолежащего катета |BC| к длине гипотенузы |AC|.

Косинус (cos α) – это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины прилежащего катета |AB| к длине гипотенузы |AC|.

Принятые обозначения

;
;
.

;
;
.

График функции синус, y = sin x

График функции косинус, y = cos x

Свойства синуса и косинуса

Периодичность

Функции   y = sin x   и   y = cos x   периодичны с периодом   2π.

Четность

Функция синус – нечетная. Функция косинус – четная.

Область определения и значений, экстремумы, возрастание, убывание

Функции синус и косинус непрерывны на своей области определения, то есть для всех x (см. доказательство непрерывности). Их основные свойства представлены в таблице (n - целое).

  y = sin x y = cos x
Область определения и непрерывность – ∞ < x < + ∞ – ∞ < x < + ∞
Область значений –1 ≤ y ≤ 1 –1 ≤ y ≤ 1
Возрастание
Убывание
Максимумы, y = 1
Минимумы, y = –1
Нули, y = 0
Точки пересечения с осью ординат, x = 0 y = 0 y = 1

Основные формулы

Сумма квадратов синуса и косинуса

Формулы синуса и косинуса от суммы и разности

Формулы произведения синусов и косинусов

Формулы суммы и разности

Выражение синуса через косинус

Далее мы полагаем, что – целое число.

;
;
    ;
    .

Выражение косинуса через синус

;
;
    ;
    .

Выражение через тангенс

;     .

При   , имеем:
;     .

При   :
;     .

Таблица синусов и косинусов, тангенсов и котангенсов

В данной таблице представлены значения синусов и косинусов при некоторых значениях аргумента.

Выражения через комплексные переменные


;    

Формула Эйлера

Выражения через гиперболические функции

;    
;    

Производные

;     .     Вывод формул > > >

Производные n-го порядка:
;     .

Интегралы

;    
См. также раздел Таблица неопределенных интегралов >>>

Разложения в ряды

    { –∞ < x < +∞ }
    { –∞ < x < +∞ }

Секанс, косеканс

   

Обратные функции

Обратными функциями к синусу и косинусу являются арксинус и арккосинус, соответственно.

Арксинус, arcsin

   
   
   

Арккосинус, arccos

   
   
   

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Автор: Олег Одинцов.     Опубликовано:   Изменено:

1cov-edu.ru

гиперболический синус | C++ для приматов

Условие

Вычислите с точностью [latex]\varepsilon[/latex] значение функции [latex]f\left( x \right) = \text{sh}x[/latex]. При вычислениях допустимо использовать только арифметические операции.

Входные данные

В одной строке задано два числа [latex]x[/latex] и [latex]E[/latex].

Выходные данные

В одной строке вывести значение функции [latex]f\left( x \right) = \text{sh}x[/latex] и [latex]\text{sinh}x[/latex] (для проверки).
[latex]\text{sh} \left( x \right) = x — \frac {x^{3}}{3!}+\frac{x^{5}}{5!} — \cdots = \displaystyle\sum_{n=0}^{\infty}\frac{1}{(2n+1)!}x^{ 2n+1 },x\in{C}[/latex]

Тесты

Входные данные Выходные данные

(мои и стандартной функции)

1.57 1e-10000 2.2993 2.2993
3.14 1e-100000 11.5303 11.5303
0 0.1 0 0
1.05 1e-1000 1.25386 1.25386
0.785 0 0.868144 0.868144
0.52 0.01 0.543435 0.543754

Код

#include <iostream>

#include <cmath>

using namespace std;

int main() {

int i=0;

double  x, E;

cin >> x >> E;

double sh=x, a=x;

while((a*=(x*x/(2*i+2)/(2*i+3)))>E) {

sh+=a;

i++;

}

cout << sh << ' ' << sinh(x);

return 0;

}

Решение

Для того чтобы найти с точностью значение функции, в данном варианте это [latex]f\left( x \right) = \text{sh}x[/latex] — гиперболический синус, надо воспользоваться рядом Тейлора. Находим следующий член ряда Тейлора и прибавляем к функции и так пока не дойдем до члена, который будет меньше, либо равен точности. Чтобы проверить на правильность наших вычислений можно воспользоваться уже готовой функцией нахождения гиперболического синуса [latex]\text{sinh}x[/latex].
Код программы

Posted in 3. Циклы. Tagged гиперболический синус, ряд Тейлора.

cpp.mazurok.com

Синус косинус и тангенс - материалы для подготовки к ЕГЭ по Математике

Изучение тригонометрии мы начнем с прямоугольного треугольника. Определим, что такое синус и косинус, а также тангенс и котангенс острого угла. Это основы тригонометрии.

Напомним, что прямой угол — это угол, равный 90 градусов. Другими словами, половина развернутого угла.

Острый угол — меньший 90 градусов.

Тупой угол — больший 90 градусов. Применительно к такому углу «тупой» — не оскорбление, а математический термин 🙂

Нарисуем прямоугольный треугольник. Прямой угол обычно обозначается . Обратим внимание, что сторона, лежащая напротив угла, обозначается той же буквой, только маленькой. Так, сторона, лежащая напротив угла A, обозначается .

Угол обозначается соответствующей греческой буквой .

Гипотенуза прямоугольного треугольника — это сторона, лежащая напротив прямого угла.

Катеты — стороны, лежащие напротив острых углов.

Катет , лежащий напротив угла , называется противолежащим (по отношению к углу ). Другой катет , который лежит на одной из сторон угла , называется прилежащим.

Синус острого угла в прямоугольном треугольнике — это отношение противолежащего катета к гипотенузе:

Косинус острого угла в прямоугольном треугольнике — отношение прилежащего катета к гипотенузе:

Тангенс острого угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:

Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу:

Котангенс острого угла в прямоугольном треугольнике — отношение прилежащего катета к противолежащему (или, что то же самое, отношение косинуса к синусу):

Обратите внимание на основные соотношения для синуса, косинуса, тангенса и котангенса, которые приведены ниже. Они пригодятся нам при решении задач.

Давайте докажем некоторые из них.

  1. Сумма углов любого треугольника равна . Значит, сумма двух острых углов прямоугольного треугольника равнa .
  2. С одной стороны, как отношение противолежащего катета к гипотенузе. С другой стороны, , поскольку для угла  катет а будет прилежащим.Получаем, что . Иными словами, .
  3. Возьмем теорему Пифагора: . Поделим обе части на : Мы получили основное тригонометрическое тождество.
  4. Поделив обе части основного тригонометрического тождества на , получим: Это значит, что если нам дан тангенс острого угла , то мы сразу можем найти его косинус. Аналогично,

Хорошо, мы дали определения и записали формулы. А для чего все-таки нужны синус, косинус, тангенс и котангенс?

Мы знаем, что сумма углов любого треугольника равна .

Знаем соотношение между сторонами прямоугольного треугольника. Это теорема Пифагора: .

Получается, что зная два угла в треугольнике, можно найти третий. Зная две стороны в прямоугольном треугольнике, можно найти третью. Значит, для углов — свое соотношение, для сторон — свое. А что делать, если в прямоугольном треугольнике известен один угол (кроме прямого) и одна сторона, а найти надо другие стороны?

С этим и столкнулись люди в прошлом, составляя карты местности и звездного неба. Ведь не всегда можно непосредственно измерить все стороны треугольника.

Синус, косинус и тангенс — их еще называют тригонометрическими функциями угла — дают соотношения между сторонами и углами треугольника. Зная угол, можно найти все его тригонометрические функции по специальным таблицам. А зная синусы, косинусы и тангенсы углов треугольника и одну из его сторон, можно найти остальные.

Мы тоже нарисуем таблицу значений синуса, косинуса, тангенса и котангенса для «хороших» углов от  до .

Обратите внимание на два красных прочерка в таблице. При соответствующих значениях углов тангенс и котангенс не существуют.

Ты нашел то, что искал? Поделись с друзьями!

Разберем несколько задач по тригонометрии из Банка заданий ФИПИ.

1. В треугольнике угол  равен , . Найдите .

Задача решается за четыре секунды.

Поскольку , .

2. В треугольнике угол  равен , , . Найдите .

Имеем:

Отсюда

Найдем  по теореме Пифагора.

Задача решена.

Часто в задачах встречаются треугольники с углами  и  или с углами  и . Основные соотношения для них запоминайте наизусть!

Для треугольника с углами  и  катет, лежащий напротив угла в , равен половине гипотенузы.

Треугольник с углами  и  — равнобедренный. В нем гипотенуза в раз больше катета.

Мы рассмотрели задачи на решение прямоугольных треугольников — то есть на нахождение неизвестных сторон или углов. Но это не всё! В вариантах ЕГЭ по математике множество задач, где фигурирует синус, косинус, тангенс или котангенс внешнего угла треугольника. Об этом — в следующей статье.

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России)                        +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

ege-study.ru

Основные формулы тригонометрии | umath.ru


1. Определения синуса, косинуса, тангенса и котангенса угла.

Синус угла  (обозначается ) – ордината точки , полученной поворотом точки вокруг начала координат на угол .

Косинус угла (обозначается ) – абсцисса точки , полученной поворотом точки вокруг начала координат на угол .

Тангенс угла (обозначается ) – отношение синуса угла к его косинусу, т.е.


Котангенс угла (обозначается ) – отношение косинуса угла к его синусу, т.е.
2. Основное тригонометрическое тождество:
3. Зависимость между синусом, косинусом, тангенсом и котангенсом:
4. Чётность, нечётность и периодичность тригонометрических функций.

Косинус – чётная функция, а синус, тангенс и котангенс – нечётные функции аргумента :


Синус и косинус – периодические с периодом 2\pi функции, а тангенс и котангенс – периодические с периодом функции:Число является наименьшим положительным периодом синуса и косинуса, а число – наименьшим положительным периодом тангенса и котангенса.
Для любого целого справедливы равенства
5. Формулы сложения:
6. Формулы двойного и тройного аргумента:
7. Формулы понижения степени:
8. Формулы приведения:
9. Формулы суммы и разности синусов:
10. Формулы суммы и разности косинусов:
11. Формулы суммы и разности тангенсов:
12. Преобразование произведения синусов и косинусов в сумму (разность):
13. Выражение синуса и косинуса через тангенс половинного аргумента:

umath.ru

определения, формулы, примеры, угол поворота

Тригонометрия - раздел математической науки, в котором изучаются тригонометрические функции и их использование в геометрии. Развитие тригонометрии началось еще во времена античной Греции. Во времена средневековья важный вклад в развитие этой науки внесли ученые Ближнего Востока и Индии. 

Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии. 

Yandex.RTB R-A-339285-1

 

Синус, косинус, тангенс и котангенс. Определения

Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.

Определения тригонометрических функций

Синус угла (sin α) - отношение противолежащего этому углу катета к гипотенузе.

Косинус угла (cosα) - отношение прилежащего катета к гипотенузе.

Тангенс угла (tg α) - отношение противолежащего катета к прилежащему.

Котангенс угла (ctg α) - отношение прилежащего катета к противолежащему.

Данные определения даны для острого угла прямоугольного треугольника!

Приведем иллюстрацию. 

В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.

Определения синуса, косинуса, тангенса и котангенса позволяют вычислять значения этих функций по известным длинам сторон треугольника.

Важно помнить!

Область значений синуса и косинуса: от -1 до 1. Иными словами синус и косинус принимают значения от -1 до 1. Область значений тангенса и котангенса - вся числовая прямая, то есть эти функции могут принимать любые значения.

Угол поворота

Определения, данные выше, относятся к острым углам. В тригонометрии вводится понятие угла поворота, величина которого, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов.Угол поворота в градусах или радианах выражается любым действительным числом от -∞ до +∞. 

В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность с центром в начале декартовой системы координат.

                                                                 

Начальная точка A с координатами (1, 0) поворачивается вокруг центра единичной окружности на некоторый угол α и переходит в точку A1. Опред

zaochnik.com

Тригонометрические выражения и тригонометрические формулы [wiki.eduVdom.com]

subjects:mathematics:тригонометрические_выражения_и_формулы

Отметим на координатной оси Ох справа от точки О точку А и построим окружность с центром в точке О и радиусом ОА (так называемым начальным радиусом).


Окружность с центром в точке О и радиусом ОА

Рис.1

Пусть при повороте на угол a против часовой стрелки начальный радиус ОА переходит в радиус ОВ.

Тогда:

  • Синусом (sin α) угла α называется отношение ординаты точки В к длине радиуса.

  • Косинусом (cos α) угла α называется отношение абсциссы точки В к длине радиуса.

  • Тангенсом (tg α) угла α называется отношение ординаты точки В к ее абсциссе.

  • Котангенсом (ctg α) угла α называется отношение абсциссы точки В к ее ординате.

  • Секанс определяется как sec α = 1/(cos α)

  • Косеканс определяется как cosec α = 1/(sin α)

  • В западной литературе тангенс, котангенс и косеканс обозначаются tan x, cot x, csc x

Если координаты точки В равны x и y, то:

$$\sin{\alpha} = \frac{y}{R}\;;\; \cos{\alpha} = \frac{x}{R}\;;\; {\rm tg}\, \alpha = \frac{y}{x}\;;\; {\rm ctg}\, \alpha = \frac{x}{y}$$

Таблица значений sin α, cos α, tg α, ctg α

Приведем таблицу значений тригонометрических функций некоторых углов (прочерк сделан, когда выражение не имеет смысла):

Таблица значений sin α, cos α, tg α, ctg α

0 рад

30º
$$\frac{\pi}{6}$$
45º
$$\frac{\pi}{4}$$
60º
$$\frac{\pi}{3}$$
90º
$$\frac{\pi}{2}$$
180º

$$\pi$$

270º
$$\frac{3\pi}{2}$$
360º

$$2\pi$$

$$\sin \alpha$$ 0 $$\frac{1}{2}$$ $$\frac{\sqrt{2}}{2}$$ $$\frac{\sqrt{3}}{2}$$ 1 0 -1 0
$$\cos \alpha$$ 1 $$\frac{\sqrt{3}}{2}$$ $$\frac{\sqrt{2}}{2}$$ $$\frac{1}{2}$$ 0 -1 0 1
$${\rm tg}\, \alpha$$ 0 $$\frac{1}{\sqrt{3}}$$ 1 $$\sqrt{3}$$ - 0 - 0
$${\rm ctg}\, \alpha$$ - $$\sqrt{3}$$ 1 $$\frac{1}{\sqrt{3}}$$ 0 - 0 -

Свойства sin, cos, tg и ctg

Свойства синуса (sin), косинуса (cos), тангенса(tg) и котангенса(ctg):

  1. Определение знака

    • Если α-угол I или II координатной четверти, то sin α > 0;

    • Если α-угол III или IV координатной четверти, то sin α < 0;

    • Если α-угол I или IV координатной четверти, то cos α > 0;

    • Если α-угол II или III координатной четверти, то cos α < 0;

    • Если α-угол I или III координатной четверти, то tg α > 0 и ctg α > 0;

    • Если α-угол II или IV координатной четверти, то tg α < 0 и ctg α < 0.

  2. Синус, тангенс и котангенс - нечетные функции; косинус - четная функция.

    • Для чётной функции справедливо равенство: y(-x) = y(x). Примеры чётных функций: y = cos(x), y = x2.

    • Для НЕчётной функции справедливо равенство: y(-x) = -y(x). Примеры НЕчётных функций: y = sin(x), y = x.

  3. При изменении угла на целое число оборотов значения тригонометрических функций не меняются.

1 радиан - это мера центрального угла, которому соответствует длина дуги, равная длине радиуса окружности.

Связь радианов с градусами: $1° =\frac{\pi}{180}\text{рад; 1 рад }=\frac{180°}{\pi}$.

Основные тригонометрические тождества

Формулы приведения

X $\frac{\pi}{2}-\alpha$ $\frac{\pi}{2}+\alpha$ $\pi-\alpha$ $\pi+\alpha$ $\frac{3\pi}{2}-\alpha$ $\frac{3\pi}{2}+\alpha$ $2\pi-\alpha$ $2\pi+\alpha$
sin x cos α cos α sin α -sin α -cos α -cos α -sin α sin α
cos x sin α -sin α -cos α -cos α -sin α sin α cos α cos α
tg x ctg α -ctg α -tg α tg α ctg α -ctg α -tg α tg α
ctg x tg α -tg α -ctg α ctg α tg α -tg α -ctg α ctg α

Формулы сложения

Формулы двойного угла

Формулы двойного угла или двойного аргумента:

Формулы половинного аргумента

Формулы половинного аргумента (для sin и cos - формулы понижения степени):

Формулы суммы и разности

Формулы произведения

Соотношения между sin x, cos x и tg(x/2)

Один из способов использования: свести всё к tg(x/2) и путём замены получить обычное алгебраическое выражение.

Простейшие тригонометрические уравнения

Дополнительно

subjects/mathematics/тригонометрические_выражения_и_формулы.txt · Последние изменения: 2014/02/26 22:10 —

www.wiki.eduvdom.com

c - Как C вычисляет sin() и другие математические функции?

Многочлены Чебышева, как упоминалось в другом ответе, являются многочленами, где наибольшее различие между функцией и полиномом как можно меньше. Это отличный старт.

В некоторых случаях максимальная ошибка - это не то, что вас интересует, а максимальная относительная ошибка. Например, для синусоидальной функции ошибка вблизи x = 0 должна быть намного меньше, чем для больших значений; вам нужна небольшая относительная ошибка. Таким образом, вы вычисляете полином Чебышева для sin x/x и умножаем этот многочлен на x.

Затем вам нужно выяснить, как оценить многочлен. Вы хотите оценить его таким образом, чтобы промежуточные значения были небольшими, и поэтому ошибки округления небольшие. В противном случае ошибки округления могут стать намного большими, чем ошибки в полиноме. И с функциями, такими как функция синуса, если вы небрежны, возможно, результат, который вы вычисляете для sin x, больше, чем результат для sin y, даже когда x < у. Поэтому необходим тщательный выбор порядка расчета и вычисления верхних границ погрешности округления.

Например, sin x = x - x ^ 3/6 + x ^ 5/120 - x ^ 7/5040... Если вы наивно вычисляете sin x = x * (1 - x ^ 2/6 + x ^ 4/120 - x ^ 6/5040...), то эта функция в круглых скобках уменьшается, и произойдет, что если y - следующее большее число к x, то иногда sin y будет меньше, чем sin x. Вместо этого вычислите sin x = x - x ^ 3 * (1/6 - x ^ 2/120 + x ^ 4/5040...), где этого не может быть.

При расчете полиномов Чебышева, например, обычно нужно округлить коэффициенты до двойной точности. Но в то время как полином Чебышева оптимален, полином Чебышева с коэффициентами, округленными до двойной точности, не является оптимальным полиномом с коэффициентами двойной точности!

Например, для sin (x), где вам нужны коэффициенты для x, x ^ 3, x ^ 5, x ^ 7 и т.д., вы делаете следующее: Вычислите наилучшее приближение sin x с полиномом (ax + bx ^ 3 + cx ^ 5 + dx ^ 7) с более высокой, чем двойной точностью, затем округляя до двойной точности, давая A. Разница между a и A будет довольно большой. Теперь вычислим наилучшее приближение (sin x - Ax) с полиномом (b x ^ 3 + cx ^ 5 + dx ^ 7). Вы получаете разные коэффициенты, потому что они приспосабливаются к разности между a и A. Круглый b для двойной точности B. Тогда приближенно (sin x - Ax - Bx ^ 3) с полиномом cx ^ 5 + dx ^ 7 и т.д. Вы получите полином, который почти так же хорош, как и оригинальный полином Чебышева, но намного лучше, чем Чебышев, округленный до двойной точности.

Далее следует учитывать ошибки округления при выборе полинома. Вы нашли многочлен с минимальной ошибкой в ​​полиноме, игнорируя ошибку округления, но вы хотите оптимизировать ошибку полинома плюс округление. Когда у вас есть полином Чебышева, вы можете рассчитать границы ошибки округления. Скажем, что f (x) - ваша функция, P (x) - многочлен, а E (x) - ошибка округления. Вы не хотите оптимизировать | f (x) - P (x) |, вы хотите оптимизировать | f (x) - P (x) +/- E (x) |. Вы получите немного другой полином, который пытается сохранить ошибки полинома, где ошибка округления велика, и немного ослабляет ошибки полинома, где ошибка округления мала.

Все это позволит вам легко округлять ошибки не более чем в 0,55 раза по сравнению с последним битом, где +, -, *,/имеют ошибки округления не более 0,50 раз больше последнего бита.

qaru.site

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *