8-900-374-94-44
[email protected]
Slide Image
Меню

Схема индукционная паяльная станция своими руками – устройство прибора и схема для изготовления своими руками

Содержание

устройство прибора и схема для изготовления своими руками

Жало обычного резистивного паяльника нагревается за счет электрического тока, который протекает через нихромовую спираль, намотанную на капсулу стержня. Недостатки этого процесса: низкий КПД, локальный прогрев, и как результат, большое потребление электроэнергии.

Керамические паяльники более совершенные, но они боятся резких перепадов температур. Совсем по другому принципу работает индукционная паяльная станция. Разогрев жала происходит быстро, а регулировка нагрева максимально простая.

Принцип работы

Основным отличием индукционного паяльника от обычного является нагревательный элемент, а точнее, его полное отсутствие. Нагрев инструмента происходит благодаря возникновению вихревых индукционных токов под действием переменного магнитного поля.

В конструкции индукционного паяльника предусмотрена катушка, в которую вставлен стержень жала прибора.

При подаче тока на катушку в ней генерируется магнитное поле. Оно воздействует на жало паяльника, где и образуются индукционные токи, нагревающие сам стержень.

При этом жало паяльника прогревается равномерно, потому что индукционный ток воздействует на него по всей длине. Срок эксплуатации такого инструмента увеличивается, а его КПД возрастает.

Первоначально выпускались индукционные паяльные станции с частотой 470 кГц, но сегодня встречаются модели, в которых подается напряжение 13 МГц и выше. Разогрев происходит буквально за секунду.

Регулировка нагрева

Сердечник индукционного паяльника делают из меди (не магнитный материал), а заднюю его часть покрывают ферромагнитным материалом (сплав железа и никеля). Передняя часть служит жалом, сам сердечник называют картриджем.

Регулировка нагрева медного жала происходит следующим образом:

  • при подаче переменного напряжения, а значит и поля, в покрытии генерируются токи Фуко, которые разогревают материал;
  • тепло передается меди;
  • как только температура покрытия достигает точки Кюри, магнитные свойства исчезают и разогрев прекращается;
  • в процессе работы индукционным паяльником медное жало отдает тепло детали и остывает, остывает также ферромагнитное покрытие;
  • как только покрытие остывает, возвращаются магнитные свойства, и мгновенно возобновляется нагрев.

Можно сказать, что происходит автоматическое регулирование температуры, причем с высокой точностью.

Максимальный нагрев индукционного паяльника зависит от свойств магнитного сплава и сердечника. Такое управление называется умным теплом (smart heat).

Менять температуру для конкретных условий пайки можно, установив температурный датчик, который подключается к блоку управления станцией, либо же меняя картриджи (сердечник с наконечником) которые вставляют в ручку индукционного паяльника.

Первый вариант дешевле второго, поэтому им сегодня пользуются не только профессионалы. Зато второй способ точнее и надежнее.

Сборка своими руками

Вопрос, можно ли сделать индукционный паяльник своими руками, в основном носит теоретическую подоплеку. С практической стороны это неоправданно даже с чисто ценовой позиции.

Просто любая китайская паяльная станция будет стоить столько же, сколько сделанная своими руками. И разговор о самодельной конструкции в основном будет касаться именно блока управления. Для чего придется приобретать индукционный паяльник.

Что касается непосредственно изготовления самого инструмента, то его можно сделать из подручных материалов. Правда, такой индукционный паяльник будет маломощным.

Потребуется резистор на 5-10 Ом, медная проволока и ферритовая бусинка для изготовления катушки, а также провода для подачи электрического тока.

В первую очередь мультиметром проверяют сопротивление резистора. После чего с одной его стороны снимают крышку. Теперь потребуется стальная проволока.

К примеру, для этого можно использовать скрепку. Ее разворачивают, и один конец залуживают. Вторым концом оборачивают резистор в месте удаленной крышки.

Далее необходим кусочек текстолита, который с двух сторон также облуживается. Его размер подбирается так, чтобы он входил свободно в будущий корпус катушки. Теперь текстолитовую пластину припаивают к проволоке из скрепки и проводу от резистора.

Далее собирают катушку – на бусинку накручивают медную проволоку, к концам которой присоединяют проводки с вилкой. Луженая текстолитовая пластинка вставляется в подготовленную катушку. Во всех соединениях проводится пайка.

Остается только обмотать вокруг катушки изоленту, вставить в открытый резистор толстую медную проволоку, а саму катушку в подготовленный корпус. К примеру, это может быть алюминиевая трубка.

Обратите внимание, что медная проволока должна войти в резистор с натягом, чтобы жало индукционного паяльника не шевелилось в своем корпусе.

И последнее – обмотка всего корпуса прибора изоляционной лентой. Вот такая простая схема сборки самодельного индукционного паяльника. Им, конечно, большие заготовки паять нельзя, а вот для небольшой микросхемы он подойдет в самый раз.

Особенности приборов

Среди особенностей индукционных паяльников надо отметить тонкий сменный картридж, от которого во многом зависит температура нагрева жала.

Он представляет собой тонкую трубку, которая в сочетании с легким корпусом прибора дает возможность долгое время просиживать за процессом пайки.

Рука не устает, а значит, не меняется точность подвода жала и припоя, нет подтеков излишков материала, увеличивается скорость проводимых операций. Отсутствует сложная электронная схема, степень нагрева регулируется автоматически.

По всем показателям индукционный паяльник более совершенен, чем традиционные паяльные приборы. Хотя он еще не достаточно широко распространен, такую конструкцию можно отнести к технике нового поколения.

svaring.com

схема инфракрасной самодельной станции с феном

Многие радиолюбители не могут подобрать подходящий инструмент для ежедневной пайки различных микросхем и компонентов. Паяльная станция своими руками для таких умельцев – это один из лучших вариантов решения всех проблем.

Больше не нужно выбирать из множества несовершенных фабричных устройств, достаточно найти подходящие комплектующие, потратить немного времени и сделать идеальное устройство, удовлетворяющее все требования, своими руками.

Виды паяльных станций

Современный рынок предлагает радиолюбителям огромное количество всевозможных видов аппаратуры для пайки с разной комплектацией.

В большинстве случаев станции для пайки делятся на:

  1. Контактные станции.
  2. Цифровые и аналоговые устройства.
  3. Индукционные аппараты.
  4. Бесконтактные устройства.
  5. Демонтажные станции.

Первый вариант станций представляет собой паяльник, подключенный к блоку регулировки температуры.

Электрическая схема паяльной станции.

Контактные паяльные устройства делятся на:

  • устройства для работы со свинцовосодержащими припоями;
  • устройства для работы с безсвинцовыми припоями.

Устройства для пайки, позволяющие плавить безсвинцовый припой, обладают мощными нагревательными элементами. Такой выбор паяльников обусловлен высокой температурой плавления припоя без свинца. Безусловно, благодаря наличию регулятора температуры, подобные аппараты применимы для работы со свинцовосодержащим припоем.

Аналоговые аппараты для пайки регулируют температуру жала при помощи термодатчика. Как только наконечник перегревается, питание отключается. При остывании сердечника питание вновь подается на паяльник и начинается нагрев.

Цифровые устройства управляют температурой паяльника при помощи специализированного ПИД регулятора, который в свою очередь подчиняется своеобразной программе, заложенной в микроконтроллер.

Отличительной особенностью индукционных устройств является нагрев сердечника паяльника при помощи импульсной катушки. В процессе работы происходят колебания высоких частот, образующие в ферромагнетиковом покрытии аппаратуры вихревые токи.

Остановка нагрева происходит из-за достижения ферромагнетиком точки Кюри, после которой меняются свойства металла и прекращается эффект от воздействия высоких частот.

Бесконтактные аппараты для пайки делятся на:

  • инфракрасные;
  • термовоздушные;
  • комбинированные.

Самодельная инфракрасная паяльная станция состоит из нагревательного элемента в виде кварцевого или керамического излучателя.

Инфракрасные паяльные станции, по сравнению с термовоздушными, обладают следующими ощутимыми преимуществами:

  • отсутствие необходимости в поиске насадок на паяльный фен;
  • хорошо подходят для работы со всеми видами микросхем;
  • отсутствие термической деформации печатных плат из-за равномерного прогрева;
  • радиодетали не сдуваются воздухом с платы;
  • равномерный прогрев места пропая.

Важно отметить, что инфракрасные устройства для пайки являются профессиональным оборудованием и редко используются простыми радиолюбителями.

Зависимость температуры от времени пайки.

В большинстве случаев инфракрасные аппараты состоят из:

  • верхнего керамического или кварцевого нагревателя;
  • нижнего нагревателя;
  • стола для поддержки печатных плат;
  • микроконтроллера, управляющего станцией;
  • термопар для контроля текущих температур.

Термовоздушные станции для пайки используются для монтажа радиодеталей. В большинстве случает термовоздушными станциями удобно паять компоненты, находящиеся в SMD корпусах. Такие детали имеют миниатюрные размеры и хорошо паяются по средствам подачи на них горячего воздуха из термофена.

Комбинированные устройства, как правило, сочетают в себе несколько видов паяльного оборудования, например, термофен и паяльник.

Демонтажные станции комплектуются компрессором, работающим на втягивание воздуха. Такое оборудование оптимально подходит для снятия излишков припоя или демонтажа ненужных компонентов на печатной плате.

Все мало-мальски приличные станции для пайки компонентов в разных корпусах, имеют в наличие такое дополнительное оборудование:

  • лампы подсветки;
  • дымоуловители или вытяжки;
  • пистолеты для демонтажа и всасывания излишков припоя;
  • вакуумные пинцеты;
  • инфракрасные излучатели для прогрева всей печатной платы;
  • термофен для прогрева определенного участка;
  • термопинцет.

Паяльная станция своими руками

Наиболее функциональная и удобная станция – это инфракрасная.

Перед тем, как сделать инфракрасную паяльную станцию своими руками, следует приобрести следующие элементы:

  • галогеновый обогреватель на четырех инфракрасных лампах мощностью 2КВт;
  • верхний инфракрасный нагреватель для паяльной станции в виде керамической инфракрасной головки на 450 Вт;
  • алюминиевые уголки для создания каркаса конструкции;
  • шланг для душа;
  • проволока из стали;
  • нога от любой настольной лампы;
  • программируемый микрокомпьютер, например, Ардуино;
  • несколько твердотельных реле;
  • две термопары для контроля текущей температуры;
  • блок питания на 5 вольт;
  • небольшой экран;
  • зуммер на 5 вольт;
  • крепежные элементы;
  • при необходимости, паяльный фен.

В качестве верхнего нагревателя можно использовать кварцевые или керамические нагреватели.

Изготовление паяльной станции своими руками.

Преимущества керамических излучателей представлены:

  • невидимым спектром излучения, не повреждающим глаза радиолюбителя;
  • более длительным временем безотказной работы;
  • большой распространенностью.

В свою очередь, кварцевые ИК подогреватели обладают следующими плюсами:

  • большая однородность температуры в зоне подогрева;
  • меньшая стоимость.

Этапы сборки ИК паяльной станции представлены ниже:

  1. Монтаж элементов нижнего нагревателя для работы с bga элементами.
    Наиболее простым методом добычи четырех галогеновых ламп служит демонтаж их из старенького обогревателя. После того, как вопрос с лампами решен, следует придумать вид корпуса.
  2. Сборка конструкции паяльного стола и продумывание системы удержания плат на нижнем нагревателе.
    Установка системы крепления печатных плат заключается в отрезке шести кусков алюминиевого профиля и прикреплении их к корпусу при помощи гаек из перфорированной ленты. Получившаяся система крепления позволяет перемещать печатную плату и подстраивать ее под нужды радиолюбителя.
  3. Монтаж элементов верхнего нагревателя и паяльного фена.
    Керамический нагреватель на 450 – 500 Вт можно приобрести в китайском интернет магазине. Для монтажа верхнего подогрева необходимо взять лист металла и согнуть его по размерам нагревателя. После этого верхний нагреватель самодельной ик вместе с феном следует разместить на ножке от старой настолько лампы и подключить к блоку питания.
  4. Программирование и подключение микрокомпьютера.
    Наиболее ответственный этап создания собственного инфракрасного устройства для пайки, включающий: создание корпуса для микроконтроллера с продумыванием места под остальные компоненты и кнопки. В корпусе вместе с контроллером должны быть следующие элементы: два твердотельных реле, дисплей, блок питания, кнопки и соединительные клеммы.

Большинство радиолюбителей предпочитают использовать старые системные блоки в качестве основы корпуса и алюминиевые уголки для крепления всех основных элементов нижнего нагревателя. При подключении ламп рекомендуется использовать штатную проводку разобранного галогенового обогревателя.

По завершению процесса сборки станции следует переходить к непосредственной настройке микроконтроллера. Радиолюбителям, сделавшим самому инфракрасную паяльную станцию, зачастую приходилось использовать микрокомпьютер Ардуино ATmega2560.

Программное обеспечение, написанное специально для устройств, основанных на данном типе контроллера, можно найти в интернете.

Схема

Принципиальная схема инфракрасного паяльника.

Типовая схема паяльной станции включает:

  • блок усилителей термопар;
  • микроконтроллер с экраном;
  • клавиатуру;
  • звуковой сигнализатор, например, компьютерный спикер;
  • элементы питания и поддержки паяльного фена;
  • чертежи элементов детектора нуля;
  • элементы силовой части;
  • блок питания всей аппаратуры.

В большинстве случаев, схема станции представлена следующими микрокомпонентами:

  • опторазвязка;
  • мосфет;
  • симистор;
  • несколько стабилизаторов;
  • потенциометр;
  • подстроечный резистор;
  • резистор;
  • светодиоды;
  • резонатор;
  • несколько резонаторов в СМД корпусах;
  • конденсаторы;
  • переключатели.

Точные маркировки деталей разнятся в зависимости от потребностей и предполагаемых рабочих режимов.

Процесс

Процесс сборки инфракрасной паяльной станции во многом зависит от предпочтений мастера.

Типовой вариант устройства на микроконтроллере Ардуино, устраивающий большинство радиолюбителей, собирается в такой последовательности:

  • подбор необходимых элементов;
  • подготовка радиодеталей и нагревателей к проведения монтажных работ;
  • сборка корпуса паяльной станции;
  • установка нижних предварительных нагревателей для равномерного разогрева массивных печатных плат;
  • установка платы управления комбайном для пайки и ее фиксация при помощи заранее подготовленных крепежных элементов;
  • монтаж верхнего нагревателя и паяльного термофена;
  • установка креплений для термопар;
  • программирование микроконтроллера под определенные условия паяльных работ;
  • проверка всех элементов, включая галогеновые лампы нижнего нагревателя, инфракрасный излучатель и паяльный фен.

Устройство паяльной станции.

После полной сборки инфракрасной станции для проведения паяльных работ следует проверить все элементы на работоспособность.

Отдельное внимание нужно уделить проверке корректности работы термопар, поскольку в данной системе отсутствует их компенсация.

Это означает, что при перемене температуры воздуха в помещении термопара начнет измерять температуру с существенной погрешностью.

Проверка головки керамического нагревателя также важна. В случае, если инфракрасный излучатель перегревается, необходимо обеспечить обдув воздухом или охлаждение при помощи дополнительного радиатора.

Настройка

Настройка режимов работы ИК паяльной станции в основном заключается в:

  • установке допустимых режимов работы паяльных фенов;
  • проверке режимов работы нижнего нагревательного элемента;
  • выставлении рабочих температур верхнего кварцевого излучателя;
  • установке специальных кнопок для быстрого изменения параметров нагрева;
  • программировании микроконтроллера.

Особенности устройства паяльной станции.

По мере выполнения паяльных работ может потребоваться изменение температур и режимов.

Такие действия можно произвести при помощи кнопок, связанных с микрокомпьютером:

  • кнопка + должна быть настроена на повышение температуры покупного или самодельного кварцевого излучателя с шагом в 5 – 10 градусов;
  • кнопки – должна понижать температуру также с небольшим шагом.

Основные настройки микрокомпьютера представлены:

  • регулировкой значений P, I и D;
  • подстройкой профилей, в которых прописан шаг изменения тех или иных параметров;
  • настройкой критических температур, при которых станция отключается.

Некоторые конструкторы верхний нагреватель делают из фена. Такой подход подойдет лишь для пайки небольших элементов в SMD корпусах.

Рекомендации по работе

Самодельные ИК паяльные станции отлично подойдут для небольшого ремонта дома или в частных мастерских. Благодаря относительной простоте конструкции и широкому функционалу инфракрасные станции пользуются невероятным спросом.

Электрическая схема паяльника.

Основными рекомендациями при сборке станций и работе на них являются:

  1. Грамотная настройка параметров микроконтроллера.
    В случае, если в компьютер внесены неверные параметры, паяльная установка может некачественно пропаивать компоненты и повреждать маску печатных плат.
  2. Надевание средств защиты при выполнении паяльных работ.
    Кварцевый излучатель, в отличие от керамического, при работе порождает излучение на видимой для глаза длине волны. Поэтому, если в устройстве используется кварцевый инфракрасный излучатель рекомендуется надевать специальные защитные очки, защищающие оператора от повреждения зрения.
  3. Электрическая принципиальная схема станции должна содержать только надежные элементы.
    Кроме этого, все конденсаторы и резисторы, используемые при сборке, должны иметь быть выбраны с небольшим запасом.
  4. Контроллер для ИК паяльной станции можно выбрать из популярных моделей Ардуино.
    При желании, контроллер можно изготовить и из неизвестного микрокомпьютера, однако, в этом случае мастеру придется самостоятельно разработать программное обеспечение для работы паяльной станции.
  5. При сборке станции следует предусмотреть разъем для подключения паяльника.
    Иногда, компоненты платы удобнее точечно выпаивать при помощи обычного паяльника или устройства с термофеном вместо жала. Подобное решение можно реализовать, путем проектирования дополнительной термопары для контроля температуры паяльника.
  6. Для пайки с использованием активных флюсов и припоев с высоким содержанием свинца следует обеспечить циркуляцию воздуха.
    Хорошая вытяжка или вентилятор значительно облегчат дыхание оператора и позволяет ему не дышать испарениями вредных металлов.

Заключение

ИК паяльные станции – это одни из лучших установок для пайки всевозможных элементов в самых разных корпусных исполнениях. Сделать паяльную станцию на инфракрасных подогревающих элементах можно даже в домашних условиях.

Как правило, домашние мастера для нижних нагревателей предпочитают использовать мощные галогеновые лампы. Основные распиновки разъемов, параметры микросхем, модели микроконтроллера, инструкции о том, как из бытового фена сделать паяльный и другая информация доступна в интернете.

tutsvarka.ru

Индукционный паяльник своими руками схема


Индукционный нагреватель 500 Ватт своими руками

Схема индукционного нагревателя на 500 Ватт, который можно сделать своими руками! В интернете множество подобных схем, но интерес к ним пропадает, так как в основном они или не работают или работают но не так как хотелось бы. Данная схема индукционного нагревателя полностью рабочая, проверенная, а главное, не сложная, думаю вы оцените!

Схема индукционного нагревателя:

Компоненты и катушка:

Рабочая катушка содержит 5 витков, для намотки была использована медная трубка диаметром около 1 см, но можно и меньше. Такой диаметр был выбран не случайно, через трубку подаётся вода для охлаждения катушки и транзисторов.

Транзисторы ставил IRFP150 так как IRFP250 под рукой не оказалось. Конденсаторы плёночные 0,27 мкФ 160 вольт, но можно поставить 0,33 мкФ и выше, если первые найти не получится. Обратите внимание, что схему можно питать напряжением до 60 вольт, но в этом случае, рекомендуется ставить конденсаторы на напряжение 250 вольт. Если схема будет питаться напряжением до 30 вольт, то на 150 вполне хватит!

Стабилитроны можно ставить любые на 12-15 вольт от 1 Ватт, например 1N5349 и им подобные. Диоды можно использовать UF4007 и ему подобные. Резисторы 470 Ом от 2-х Ватт.

Немного фотографий:

За место радиаторов, были использованы медные пластины, которые припаиваются прямо к трубке, так как в данной конструкции используется водное охлаждение. На мой взгляд это самое эффективное охлаждение, потому что транзисторы греются хорошо и ни какие вентиляторы и супер радиаторы не спасут их от перегрева!

Охлаждающие пластины на плате расположены таким образом, что бы трубка катушки проходила через них. Пластины и трубку нужно припаять между собой, для этого я использовал газовую горелку и большой паяльник для пайки автомобильных радиаторов.

Конденсаторы расположены на двух стороннем текстолите, плата припаивается так же к трубке катушки на прямую, для лучшего охлаждения.

Дроссели намотаны на ферритовых кольцах, лично я достал их из компьютерного блока питания, провод использовался медных в изоляции.

Индукционный нагреватель получился достаточно мощным, латунь и алюминий плавит очень легко, железные детали тоже плавит, но немного медленнее. Так как я использовал транзисторы IRFP150 то по параметрам, схему можно питать напряжением до 30 вольт, поэтому мощность ограничивается только этим фактором. Так что всё таки советую использовать IRFP250.

На этом всё! Ниже оставлю видео работы индукционного нагревателя и список деталей, которые можно купить на AliExpress по очень низкой цене!

Купить детали на Алиэкспресс:

Купить Индукционный нагреватель:

http://kavmaster.ru/indukcionnyj-nagrevatel-500-vatt-svoimi-rukami/http://kavmaster.ru/wp-content/uploads/2017/03/654864.jpghttp://kavmaster.ru/wp-content/uploads/2017/03/654864-150x150.jpg2017-03-23T23:09:59+00:00kavinskiyБез рубрикиСхема индукционного нагревателя на 500 Ватт, который можно сделать своими руками! В интернете множество подобных схем, но интерес к ним пропадает, так как в основном они или не работают или работают но не так как хотелось бы. Данная схема индукционного нагревателя полностью рабочая, проверенная, а главное, не сложная, думаю...kavinskiy [email protected]

kavmaster.ru

Простой импульсный паяльник на базе электронного трансформатора

Данная идея родилась, после того, как один хороший друг сделал аналогичный паяльник, где был использован ЭТ (электронный трансформатор) для питания галогенных ламп на 12 Вольт. По сути, я ничего нового не придумал, а только собрал аналогичный паяльник с применением более компактного и маломощного электронного трансформатора на 50 ватт. В отличии от ЭТ высокой мощности, трансформатор выполнен на Ш-образном сердечнике, намотать нужную обмотку очень неудобно, поэтому для начала нужно выпаять и разобрать трансформатор. 

 

Обмотка на 12 Вольт состоит из 8-10 витков провода 0,8-1мм, нам нужно отмотать эту обмотку и мотать новую. 

  Силовая обмотка состоит всего из одного витка, намотка делается шиной с сечением 5-6 мм. В моем случае в качестве шины использовался экран от телевизионного кабеля. 

 

После намотки обмотке нужно предать некую стойкость. Для этого с боковых сторон сердечника вставлены кусочки картона.  Ранее у меня имелся немецкий паяльник в виде пистолета. Основа работы такого паяльника та же, что и у импульсного, только в нем применен сетевой трансформатор. Работать этим паяльником крайне неудобно из-за большого веса, а при долговременном включении трансформатор перегревается очень сильно (однажды даже перегорела сетевая обмотка, пришлось мотать самому).

 

В нашей же схеме нет таких недостатков, даже без теплоотводов тепловыделение на ключах незначительное.  Концы шины попросту запаяны к держателю жала, тепловыделения тут практически нет, значит припой будет держаться. 

 

Плату электронного трансформатора укрепил с помощью обычного силикона, никаких дополнительных примочек и приспособлений не использовал.  Схема таких ЭТ стандартная - полумостовой инвертор, в отличии от схем производителя Taschibra, этот блок достаточно стабилен, тут нет отдельного трансформатора ОС, а базовые обмотки ключей намотаны на основном трансформаторе. Схему смотрим ниже. 

В ходе работы обмотка не греется, но при долговременном включение теплота передается от жала к обмотке.  

 

Паяльник получился достаточно легким, жало греется всего за 5-6 секунд.Его можно использовать для монтажных работ, но для более масштабных дел (лужение плат и т.п.) такой паяльник не самый лучший вариант. 

Скачать список элементов (PDF)

Прикрепленные файлы:

cxem.net

Как сделать индукционный нагреватель своими руками?

Индукционные нагреватели работают по принципу «получение тока из магнетизма». В специальной катушке генерируется переменное ма

i-perf.ru

принцип работы, обзор, как выбрать

Контактный метод нагрева жала, используемый в классических схемах паяльных станций, несовершенен. Это проявляется в виде низкого КПД, большой потребляемой мощности, локального перегрева жала в зоне контакта и т.д. Паяльная индукционная станция лишена таких недостатков. Давайте рассмотрим принцип работы такого устройства, ознакомимся с несколькими популярными моделями и узнаем, как выбрать прибор, исходя из области его применения.

Принцип работы

Начнем с конструктивных особенностей индукционного нагревательного элемента (см. рисунок 1), это позволит лучше понять его принцип действия.

Нагревательный элемент индукционного прибора

Указанные обозначения:

  • А – экранирующая оболочка;
  • В – провода, подающие напряжение к индуктору;
  • С – ручка паяльника;
  • D – жало;
  • Е – индукционная катушка;
  • F – ферромагнитный слой.

Теперь поверхностно расскажем о принципе действия, не погружаясь в теоретические основы электромагнитной индукции. При поступлении в индукционную катушку высокочастотного напряжения происходит формирование переменного магнитного поля. Поскольку скин-слой жала выполнен из ферромагнитного материала, то начинается процесс его перемагничивания, который сопровождается образованием вихревых токов. Это приводит к значительному выделению тепловой энергии.

Преимущества индукционного метода очевидны: поскольку в качестве нагревательного элемента выступает жало паяльника, его нагрев происходит равномерно. Следовательно, отсутствуют потери от температурной инерции, и полностью исключен локальный перегрев, вызывающий окисление и выгорание жала. В результате, увеличивается его срок эксплуатации и повышается КПД устройства.

Принцип управления нагревом

Управлять процессом нагрева можно двумя способами:

  1. Установив на жало термодатчик и подключив его к цифровому блоку управления. Такой способ стабилизации температуры применяется практически во всех недорогих индукционных паяльных станциях, например: Quick 203H или Yihua 900Н (показана на рисунке 2). Цифровая станция Yihua 900Н
  2. Меняя состав ферромагнитного сплава, покрывающего жало. Данный принцип основан на том, что при определенной температуре (точка Кюри), ферромагнетики утрачивают свои свойства, в результате чего паяльник перестает нагреваться. Такой метод стабилизации температуры был запатентован компанией Metcal под названием SmartHeat®, что дословно переводится как «умный нагрев». Применяется в моделях Metcal, OKI, ERSA, Weller и т.д. Рисунок 3. Модель PS 900, может использоваться как для безсвинцовой пайки, так и обычной

У каждого из представленных выше методов есть свои достоинства и недостатки. Станции с термодатчиком существенно дешевле, что делает их доступными не только для профессионалов, но и любителей. Точность и надежность такого оборудования напрямую зависят от цифрового блока управления.

Второй способ стабилизации температуры осуществляется за счет установки картриджей-наконечников с определенной точкой Кюри – он более надежен. Но станции SmartHeat® имеют два существенных недостатка:

  1. Высокая стоимость, не каждый профессионал может себе позволить купить такое оборудование. Но новое поколение бюджетных моделей более доступно.
  2. При изменении режима пайки необходимо устанавливать соответствующий картридж-наконечник, которые, как правило, не входят в комплект поставки и стоят недешево.
Картриджи-наконечники

Краткий обзор

Начнем со станции с цифровым блоком управления Quick 203H (ее фото представлено на рисунке ниже).

Внешний вид станции QUICK 203Н

Оригинальная модель данной станции стоит в пределах $220-$240, китайский аналог можно найти по цене вдвое дешевле (при выборе обращайте внимание на комплектацию, может поставляться без паяльника). Отлично справляется с smd радиодеталями и содержащим свинец припоем.

Видео: обзор и работа в реальных условиях станции QUICK 203Н

Отрицательные моменты: массивные элементы и бессвинцовый припой необходимо долго прогревать.

Характеристики:

  • Заявленная производителем мощность – 90Вт.
  • Рабочая температура от 200С° до 420С°.
  • На индукционную катушку подается напряжение 36В с частотой 400кГц.
  • Стабилизация установленного теплового режима выполняется с погрешностью 2С°.
  • Нагрев до рабочей температуры 350С° занимает не более 25 секунд.

Цифровой блок управления позволяет задать 10 температурных профилей, установить блокировку по паролю на включение, выполнить калибровку, назначить время задержки включения спящего режима и отключения устройства.

Тем, кто приобрел китайский аналог прибора, рекомендуется сразу побеспокоиться о покупке оригинального жала, поскольку то, что входит в комплект, скорее, декоративное, чем рабочее.

Теперь рассмотрим станцию PS-900, работающую по технологии SmartHeat® (ее внешний вид показан на рисунке 3). Это самая доступная модель из линейки OKI, ее ориентировочная стоимость около $250.

Характеристики:

  • Минимальная мощность 5Вт, максимальная – 60Вт (регулируется автоматически).
  • Индуктор работает на частоте 470кГц.
  • Потребляемая мощность – 90Вт.
  • Напряжение питания от 90 до 240В.

Особенности:

  • Поскольку температурный режим задается картиджем-насадкой, панель блока управления упрощена до минимума, на ней имеется только кнопка включения питания.
  • Имеется возможность заменить штатный индуктор с диаметром 7,5мм менее мощным пятимиллиметровым на 35Вт. Это дает возможность производить деликатную пайку при помощи микронаконечников.
  • Паяльник автоматически включается при извлечении с подставки и выключается после установки обратно.
  • Необходимо отдельно приобрести комплект наконечников-картриджей для различных режимов пайки.

Приведем, в качестве сравнения, основные характеристики одной из моделей высшего уровня – MX-5241(см. рисунок 6). Необходимо сразу предупредить, что в руках любителя такой инструмент станет дорогой игрушкой, не более.

Рисунок 6. МХ-5241 – техника для профессионалов

Характеристики:

  • Диапазон выходной мощности от 5 до 80Вт (регулируется автоматически).
  • Частота работы индуктора – 13,56МГц.
  • Потребляемая мощность – 125Вт.
  • Напряжение питания от 90 до 240В.

Два независимых канала позволяют одновременно использовать термопинцет и паяльник.

Благодаря индикатору мгновенной мощности существенно упрощается подбор необходимого картриджа-наконечника.

Стоимость этого «чудо-инструмента» более $1200.

Выбор

Собственно, процесс выбора заключается в определении области применения станции. Бюджетная модель PS-900 отлично подходит для промышленной ручной пайки и тем, кто планирует заниматься радиоэлектроникой на профессиональном уровне.

Индукционные модели с цифровым блоком управления больше подходят для любителей, поскольку, установить необходимый тепловой режим значительно проще, чем подбирать картридж-наконечник с соответствующей точкой Кюри.

Следует учитывать, что недорогие индукционные устройства не производятся с термофеном. Если он станет необходимым для работы – термовоздушная станция может быть приобретена отдельно.

Можно ли сделать индукционную паяльную станцию своими руками?

Данный вопрос имеет, скорее, теоретическую подоплеку, чем практическое применение. Безусловно, можно сделать самодельный блок управления под готовый индукционный паяльник. Но стоимость такого проекта будет незначительно отличаться от серийного изделия, произведенного в Китае.

Значительно полезней модифицировать готовое устройство с целью его усовершенствования.

www.asutpp.ru

Паяльная станция своими руками. Проще некуда

Приветствую, Самоделкины!
В этой статье мы соберем очень простую и довольно надежную паяльную станцию.

На Ютубе уже полно роликов про паяльные станции, есть довольно интересные экземпляры, но все они сложны в изготовлении и настройке. В представленной здесь станции, все настолько просто, что справится любой, даже неопытный человек. Идею автор нашел на одном из форумов сайта «Паяльник» (forum.cxem.net), но немного ее упростил. Данная станция может работать с любым 24-х вольтовым паяльником, у которого есть встроенная термопара.

Теперь давайте рассмотрим схему устройства.
Условно автор разделил ее на 2 части. Первая, это блок питания на микросхеме IR2153.

Про нее было уже много всего сказано и на ней не будем останавливаться, примеры сможете найти в описании под видеороликом автора (ссылка в конце статьи). Если же неохота возиться с блоком питания, ее можно вообще пропустить и купить готовый экземпляр на 24 вольта и ток 3-4 ампера.


Вторая часть - это собственно мозги станции. Как уже говорилось выше, схема очень простая, выполнена на одной микросхеме, на сдвоенном операционном усилителе lm358.


Один операционник работает как усилитель термопары, а второй как компаратор.


Пару слов про работу схемы. В начальный момент времени паяльник холодный, следовательно, напряжение на термопаре минимальное, а это означает, что на инвертирующем входе компаратора напряжение отсутствует.

На выходе компаратора плюс питания. Транзистор открывается, идет нагрев спирали.


Это в свою очередь увеличивает напряжение термопары. И как только на инвертирующем входе напряжение сравняется с не инвертирующем, на выходе компаратора установится 0.

Следовательно, транзистор отключается и нагрев прекращается. Как только температура снижается на долю градуса, цикл повторяется. Также схема снабжена индикатором температуры.

Это обыкновенный цифровой китайский вольтметр, который измеряет усиленное напряжение термопары. Для его калибровки установлен подстроечный резистор.

Калибровку можно производить с помощью термопары мультиметра, или же по комнатной температуре.

Это автор продемонстрирует в ходе сборки.
Разобрались со схемами, теперь необходимо изготовить печатные платы. Для этого воспользуемся программой Sprint Layout, и начертим печатные платы.


В вашем же случае достаточно просто скачать архив (автор оставил все ссылки под видеороликом).
Теперь займёмся изготовлением опытного образца. Распечатываем чертёж дорожек.

Далее подготавливаем поверхность текстолита. Сначала с помощью наждачной бумаги зачищаем медь, а потом спиртом обезжириваем поверхность, для лучшего переноса рисунка.


Когда текстолит готов, размещаем на нем рисунок платы. Выставляем максимальную температуру на утюге и проходимся им по всей поверхности бумаги.


Все, можно приступать к травлению. Для этого готовим раствор в пропорциях 100 мл перекиси водорода, 30 г лимонной кислоты и 5 г поваренной соли.


Помещаем вовнутрь плату. А для ускорения травления автор воспользовался своим специальным устройством, которое он собрал своими руками ранее.

Теперь получившуюся плату необходимо очистить от тонера и просверлить отверстия под компоненты.

На этом все, изготовление платы закончено, можно приступать к запайке запчастей.

Запаяли плату регулятора, отмыли от остатков флюса, теперь можно подключать к ней паяльник. Но как это сделать, если мы не знаем где какой у него выход? Чтобы решить этот вопрос, необходимо разобрать паяльник.


Далее начинаем искать какой провод куда идет, параллельно записывая на бумагу, во избежание ошибок.

Также можно заметить, что сборка паяльника явно производилась на тяп-ляп. Флюс не отмыт и это нужно исправить. Исправляется это довольно легко, ничего нового, с помощью спирта и зубной щетки.


Когда узнали распиновку, берем вот такой штекер:


Далее проводами подпаиваем его к плате, а также припаиваем и другие элементы: вольтметр, регулятор, все как на схеме.

По поводу пайки вольтметра. У него имеются 3 вывода: первый и второй - это питание, а третий – измерительный.



Зачастую измерительный провод и провода питания спаяны в один. Нам необходимо его отсоединить для измерения низкого напряжения с термопары.

Также у вольтметра можно закрасить точку, чтобы она нас не сбивала. Для этого воспользуемся маркером черного цвета.


После этого можно производить включение. Питание автор берет от лабораторного блока.


Если вольтметр показывает 0 и схема не работает, возможно вы неправильно подключили термопару. Собранная без косяков схема начинает работать сразу. Проверяем нагрев.

Все отлично, теперь можно калибровать датчик температуры. Для калибровки датчика температуры необходимо отключить нагреватель и подождать пока паяльник остынет до комнатной температуры.

Далее вращая отверткой потенциометр, выставляем заранее известную комнатную температуру. Потом на время подключаем нагреватель и даем ему остыть. Калибровку для точности лучше провести пару раз.


Теперь поговорим о блоке питания. Готовая плата выглядит так:


Также к ней необходимо намотать импульсный трансформатор.

Как его мотать, можно посмотреть в одном из предыдущих роликов автора. Ниже вы сможете ознакомиться со скриншотом расчета обмоток, может кому пригодится.

На выходе блока получаем 22-24 вольта. То же самое мы брали с лабораторного блока.

Корпус для паяльной станции.
Когда платки готовы, можно приступать к созданию корпуса. В основании будет вот такая аккуратная коробка.


В первую очередь к ней необходимо нарисовать лицевую панель для придания так сказать товарного вида. В программе FrontDesigner сделать это можно легко и просто.


Далее необходимо распечатать трафарет и с помощью двухстороннего скотча закрепляем его на торце и идем делать отверстия под запчасти.

Корпус готов, теперь осталось разместить все компоненты внутри корпуса. Автор посадил их на термоклей, так как у данных электронных компонентов практически отсутствует какой-либо нагрев, поэтому они никуда не денутся, и прекрасно будут держаться на термоклее.

На этом изготовление закончено. Можно приступать к тестам.

Как видим, паяльник отлично справляется с лужением больших проводов и пайки габаритных массивов. И вообще, станция проявляет себя отлично.

Почему просто не купить станцию? Ну, во-первых, собрать самому дешевле. Автору, изготовление данной паяльной станции обошлось в 300 гривен. Во-вторых, в случае поломки можно без труда починить такую самодельную паяльную станцию.


После эксплуатации данной станции, автор практически не заметил разницы между HAKKO T12. Единственное чего не хватает, так это энкодера. Но это уже планы на будущее.

Благодарю за внимание. До новых встреч!

Видео:


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Индукционный паяльник своими руками

Основным принципом работы обычных паяльных станций является передача тепловой энергии на жало паяльника непосредственно нагревательным элементом. Такая классическая схема устройства паяльных систем довольно несовершенна. Это сказывается на большом расходе потребляемой электрической энергии, низком КПД устройств и постоянном перегреве жала в зоне пайки. Индукционная паяльная станция (ИПС) не имеет таких недостатков. Прибор нового поколения интересен своей принципиальной схемой работы ИПС.

Паяльная индукционная станция

Что такое индукционная пайка

Индукционная паяльная система была разработана американской компанией «ОК Интернешнл». В последнее время ИПС получили широкое распространение во всём мире. В паяльнике отсутствует передающий нагревательный элемент. Нагревается только жало. Поэтому корпус прибора не нуждается в термоизоляции. Такая технология получила название Smart Heat – Умное тепло.

Ферромагнитное покрытие жала переходит в монолитный сердечник, который входит в индукционную катушку. Умная система сама активизирует нагрев наконечника паяльника, постоянно поддерживая необходимый уровень температуры в зоне паяния.

Принцип работы индукционной паяльной станции

Чтобы понять конструктивные особенности ИПС, нужно рассмотреть принцип работы нагревательного элемента.

Схема нагревательного элемента ИПС: A – экран; B – проводка подачи напряжения на индуктор; C – держатель паяльника; D – наконечник;  E – индукционная катушка; F – ферромагнитная оболочка

Оперативным элементом индукционного паяльника является наконечник. Жало имеет основу из меди, покрытую ферромагнитным сплавом F. Индукционная катушка E инициирует появление переменного магнитного поля. Под его воздействием ферромагнетик начинает активно нагреваться и передавать тепловую энергию медному сердечнику. Медь сама по себе «равнодушна» к магнитному полю, поэтому для этого нужна ферромагнитная оболочка жала паяльника.

Достигнув определённой температуры (точки Кюри), оболочка наконечника D теряет способность воспринимать переменное магнитное поле. Во время пайки происходит активная потеря тепла ферромагнитным покрытием за счёт передачи тепловой энергии меди. Остывая, оболочка жала восстанавливает свои свойства. Процесс нагрева возобновляется. В этом заключается принцип индукционного метода нагрева паяльного устройства. Отсюда и слово в названии метода «импульс».

В результате оптимального режима потребления тепловой энергии не происходит перегрева или преждевременного остывания жала. Это значительно экономит потребление электроэнергии, увеличивает срок службы наконечников и повышает качество пайки. На таком принципе работают все индукционные паяльные станции. Разработчиком таких станций является американская компания Metcal. Она же на сегодня есть основной производитель и поставщик на рынок индукционных паяльных станций.

Основная рабочая частота электрического тока станций – 450 КГц. В последнее время появились новые дорогостоящие модели с рабочей частотой, достигающей величины 13 МГц. Это относится к профессиональным аппаратам.

Паяльная станция Quick 2020

Одна из популярных моделей среди населения на сегодня является ИПС Quick 2020. Прибор заключён в металлопластиковый корпус с экраном. На дисплее отражается заданный уровень нагрева наконечника, режим ожидания. В комплект поставки станции входят паяльник со сменными наконечниками-картриджами, металлическая подставка с держателем для паяльника.

Паяльная станция Quick 2020

Сменные картриджы имеют различную форму, предназначенную для разных видов пайки. Их легко меняют, не выключая паяльник. Паяльник, вставленный в держатель, автоматически переходит в режим ожидания. Жало в это время находится в нагретом состоянии в пределах 100-1100 С. Клавишами управления задают время, по истечению которого инструмент полностью остывает. Температура нагрева устанавливается поворотной кнопкой от 0 до 4800 С.

Все заданные параметры отражаются на дисплее прибора: рабочая температура нагрева жала, время ожидания и степень нагрева в этом режиме. Жало паяльника достигает заданный уровень температуры в течение 4-5 секунд.

Как сделать индукционный паяльник своими руками

В источниках массовой информации можно найти множество вариантов самодельных паяльников, в том числе индукционного принципа работы. Следует отметить, что сделанный индукционный паяльник своими руками – не совсем то, что приборы, описанные выше.

При изготовлении самоделок не применяются ферромагнетики, нагрев жала просто осуществляется сердечником в индукционной катушке. Для корпуса используют светодиодные фонарики, старые паяльники и подходящие по форме изделия.

Самодельный индукционный паяльник

В корпус встраивают металлическую трубку, на которую навивают медную проволоку диаметром от 1 мм и более. Обычно делают 9-12 витков. Металлический стержень обёртывают термостойкой изоляционной лентой. Медную спираль тоже покрывают слоем термоизоляции. Обязательно следят за тем, чтобы витки не смыкались. В трубку вставляют медный прут, который служит жалом.

Роль станции исполняет любой небольшой понижающий трансформатор. Часто для самоделок используют трансформаторный блок для ламп дневного света.

В заключение можно сказать, кто раз пользовался индукционным паяльником, тот становится приверженцем таких приборов. Быстрый нагрев, лёгкий вес устройства и его экономичность – основные преимущества перед аналогичными «собратьями» по ремеслу.

Видео

Оцените статью:

elquanta.ru

Самодельная паяльная станция | Все своими руками

Давненько хочу себе паяльную станцию, а точнее паяльник с термостабилизацией. У нас такие паяльники стоят от 3500р, дорого конечно и жалко отдать такие деньги. Зато продаются сами паяльники от станций и стоят они копейки. Купил себе самый простой паяльник за 500р LUT0035, в интернете об этой модели ничего нет, только на этикетке паяльника указанно 24В 48В. Привез его домой и начал мудрить. Первым делом определил параметры для своей паяльной станции:
— Регулировка температур 180-360C
— Ограничение тока потребления для паяльника
— Возможность выводить паяльник в режим ожидания
Параметры определил и перешел к схематике

Собирать все решил на ШИМ TL494 в ней есть все что надо: два компоратора ошибок и регулировка скважности через 4 ножку DT. Уже развел схему, рассчитал почти всю обвязку вокруг TL494 и оказалось что мне ее будет мало. Паяльник, что я приобрел, для определения температуры использует термопару вместо терморезистора и мне пришлось добавить усилитель напряжения на дополнительном ОУ LM358. В итоге получилась вот такая схемка

Схема самодельной паяльной станции

В схеме ничего особого. С Термопары берется напряжение равное примерно 0.025В при 350C и умножается с помощью усилителя на LM358 примерно в 140 раз и делится пополам делителем R6R16
C помощью переменного резистора R8 выставляется нужное пороговое напряжение на 2 ноге компоратора ошибки равное примерно 1,75В. Пока потенциалы между первой и второй ногой не уровняются ШИМ будет моделировать импульсы на управляющем транзисторе T1. Транзистор брал IRF630

Кнопка S1 устанавливается на рычаг-подставку для паяльника, когда кнопка замкнута ширина импульсов ограничивается и ток потребление падает примерно в двое, что экономит ресурс паяльника

R12R13 делитель определяющий ток потребления, настроен на напряжение 0,2В, Что при шунте 0,1Ом поддерживает ток примерно 2А. Ток захотел ограничивать да бы экономить ресурс паяльника и трансформатора
Трансформатор взял с двумя последовательными обмотками по 17В с общей точкой и сделал однополярный двухпериодный выпрямитель с емкостью фильтра 4700мкФ, Питание микросхем через Крен 7812


Для индикации нагрева поставил параллельно нагревателю светодиод красного цвета.

Ну и парочка фото паяльной станции

В принципе все на этом, все элементарно. Паяльник работает как положено. С комнатной температуры до 200C нагревается за 85сек, до 350С — примерно 215сек

Пробовал расплавить тугоплавкий припой, который 25Вт сетевой паяльник не мог взять. Станция расплавила без проблем, массивные дорожки и детали типа КУ202 в железном корпусе паяются легко

В общем самодельной паяльной станцией остался доволен. Единственное не устраивает жало паяльника, нужно прикупить что то удобное

Печатная плата паяльной станции

Скачать печатную плату
Прочитайте Получить пароль от архива
С ув. Admin-чек

Загрузка...

Полезные материалы по этой теме:


Навигация по записям

rustaste.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *