8-900-374-94-44
[email protected]
Slide Image
Меню

Схема с печатной платы – Делаем печатную плату

Содержание

РАЗВОДКА ПЕЧАТНЫХ ПЛАТ




      
   Многие знакомы с такой технологией разводки и создания печатных плат, как вырезание дорожек. Но что делать, когда схема слишком сложна и объёмна? Тут уже придётся осваивать более современные методы, с одним из которых мы тут и познакомимся. Возьмем, например, схему этого звукового пробника:

Схема устройства

   Существенной разницы не имеет, будем ли мы разводить плату на листочке в клетку, вырезав из картона шаблоны деталей с выводами (хотя я глубоко сомневаюсь, что кто-нибудь будет пользоваться таким методом в 21 веке, когда в каждом доме есть компьютер), либо воспользуемся какой-нибудь программой для разводки печатной платы, например sprint layout. Конечно с помощью sprint layout это сделать будет намного проще, особенно в больших схемах. В обоих случаях сначала мы ставим на рабочее поле деталь с наибольшим количеством выводов в нашем случае это транзистор, допустим VT1, это у нас КТ315. (Ссылка на руководство по пользованию sprint layout будет приведена ниже). Причем поначалу при проектировании у вас печатная плата может напоминать принципиальную схему, ничего страшного, думаю все так начинали. Поставили, дальше соединяем его базу и эмиттер дорожками с резистором R1, также у нас база VT1 соединена с выводом конденсатора С1 и выводом резистора R2. Вместо линий на схеме мы соединяем на печатной плате выводы деталей дорожкой. Еще я взял себе за правило считать количество выводов деталей соединённых на схеме и на печатной плате, у нас должно получиться такое же количество соединенных пятачков.


   Как видим, с базой у нас на плате также как и на схеме соединено еще 3 вывода, на схеме они помечены красными колечками. Дальше устанавливаем транзистор VT2 - это транзистор кт361, он структуры pnp, но нам это в данный момент все равно, так как он имеет также 3 вывода и в корпусе точно таком же как и кт315. Установили транзистор, далее соединяем его эмиттер с вторым выводом R2, а второй вывод конденсатора С1 с коллектором VT2. Базу VT2 мы соединяем с коллектором VT1, устанавливаем на плату пятачки для подключения динамика ВА1, его мы соединяем одним выводом с коллектором VT2, другим выводом с эмиттером VT1. Вот как все, что описал выглядит на плате:


   Продолжаем дальше, мы устанавливаем светодиод, соединяем его с выводом ВА1 и с эмиттером VT2. После мы устанавливаем транзистор VT3, это также кт315 и соединяем его коллектором с катодом светодиода, эмиттер VT3 мы соединяем с минусом питания. Далее мы устанавливаем резистор R4 и соединяем его дорожками с базой и эмиттером транзистора VT3, вывод с базы мы пускаем на щуп Х1. Смотрим, что получилось на плате:


   И наконец устанавливаем последние несколько деталей. Установим выключатель питания, соединяя его с плюсом питания дорожкой от одного пятачка и с эмиттером VT2, дорожкой от другого пятачка, соединенного с выключателем. Соединяем этот вывод выключателя с резистором R3, а второй пятачок резистора соединяем с контактами щупа Х2.  


   Всё, плата разведена. При большом желании можно перенести этот рисунок на текстолит протравить эту плату и у вас будет устройство Звуковой пробник с прозвонкой сопротивлением до 650 Ом. Конечно, можно было при желании развести более компактно, но у меня не было такой цели, моя цель была поэтапно рассказать о процессе создания макета печатной платы. Если кого-то заинтересовал процесс создания плат с помощью программы sprint layout, рекомедую пройти и ознакомиться с руководством на форуме. Ниже прикреплен вариант платы более компактно разведенной.


   Оба варианта печатных плат в Lay можно скачать тут. Материал подготовил - AKV.

   Форум по самостоятельной сборке плат

   Обсудить статью РАЗВОДКА ПЕЧАТНЫХ ПЛАТ





РЕМОНТ РАДИОТОЧКИ

     Случай из одного ремонта радиоточки - трансляционного приёмника вещательных программ.


ЭЛЕКТРОСИРЕНА

     Схема громкой электросирены - подходит для использования в автомобилях или охранных комплексах.









radioskot.ru

КАК ПО ПЛАТЕ С ДЕТАЛЯМИ НАРИСОВАТЬ СХЕМУ

Человек надумал разобраться с работой электронного устройства. В принципе в этом нет ничего предосудительного.  Однако он даже ещё не «чайник», он только «кандидат в чайники». До сих пор не слышал про такой «титул», но надо вводить. Если раньше сначала ходили в радиокружок, слушали, что там говорят, а потом уже задавали  вопросы, то сейчас включают компьютер и сразу задают вопросы. Например, по фото печатной платы просят объяснить, как работает данная схема. Винить человека нельзя. Его увлекла электроника. Вся такая изящная, современная и доступная. А ему кроме возможности ею обладать захотелось ещё её  и понять, заглянуть в «душу».

И тут человек вспоминает про существование сайта «Радиосхемы» не только объединяющего радиолюбителей самого разного профиля и уровня, но и славящегося своей лояльностью к новичкам. Да милости просим, всегда рады. Только одно маленькое условие: на первых порах надо делать, как скажут. Причём неукоснительно и не откладывая на потом. В противном случае, как говаривало одно недоразумение, некогда возглавляющее целое государство, консенсуса мы не достигнем))

Для достижения понимания того как работает электронное устройство необходима его принципиальная электрическая схема. Рассматриваем вариант, когда в готовом виде схему найти не удалось, зато есть в наличии печатная плата. Не буду предлагать фотографировать эту плату хорошим цифровым фотоаппаратом, причем, строго в проекции «ось объектива, перпендикулярна плоскости платы», с обеих сторон, габариты платы по размеру кадра.

Так же как и скачать программу Sprint-Layout (ссылки будут ниже), в которую затем можно вставить сделанные фото и отрисовать, сначала со стороны печатных проводников, затем рисунок зеркально перевернуть и «расставить» по местам изображения электронных компонентов. Хочется-то, прямо сейчас, ничего не скачивая, не изучая и дополнительно не во что, не вникая взять и нарисовать. 

Как действовать - нужны лист тетрадной бумаги в клеточку, карандаш, ластик и линейка.

Рисование начинаем со стороны печатных проводников платы. В первую очередь изображаем размещённые там смд компоненты. Их и расстояние между ними рисуем с четырёхкратным увеличением (иначе потом там ничего не разглядишь), также должно быть сохранено их взаимное расположение и пропорциональное расстояние на плоскости. Затем жирными точками отмечаются контакты пайки.

Соединения контактов между собой прорисовываем не спеша, толстыми линиями. Тут лучше вообще использовать карандаш с мягким грифелем. На этом этапе стирательная резинка очень пригодится.

Теперь нужно отзеркалить изображение. Лист переворачивается рисунком вниз и кладётся на стекло, снизу стекло подсветить фонариком (в дневное время можно  просто прислонить  его к оконному стеклу) и обвести просвечивающиеся контуры  смд деталей и печатных проводников. Здесь уже лучше использовать шариковую авторучку.

Теперь к полученной картинке необходимо дорисовать внешние электронные компоненты (желательно выполнить их другим цветом) и указать их порядковые обозначения, приведённые на плате. Полученное уже в полной мере отображает порядок размещения деталей на печатной плате и соединение их между собой. По проводникам не лишним будет еще, и пройтись не толстым фломастером. Осталось составить список электронных компонентов, в котором будут указаны их номиналы и можно смело обращаться к знатокам за разъяснениями. В помощи, поверьте не откажут.

В заключении сделал ещё полшажка вперёд, получилась вот такая принципиальная схема, конечно же, не идеальная, но не это стояло на повестке дня. Рисовал её в программе Splan, можно конечно было это сделать и от руки, но не хватило выдержки. Даже для показательного действа.

А это плата отрисованная в Sprint-Layout, если делать наперегонки с рисованием в ручную, то успею отработать только две (против одной от руки), потому как редко рисую, кто занимается этим чаще сделает четыре.

Мораль: если это для вас действительно разовое мероприятие, то сделать всё можно и на тетрадном листочке (один раз попробовать даже надо). Во второй же раз, большая просьба, не будьте мазохистом. Автор инструкции - Babay iz Barnaula.

   Форум по схемам

   Обсудить статью КАК ПО ПЛАТЕ С ДЕТАЛЯМИ НАРИСОВАТЬ СХЕМУ




radioskot.ru

7 правил проектирования печатных плат / Habr

Приветствую! В процессе обсуждения статьи товарища KSVl была озвучена необходимость небольшого пособия по проектированию печатных плат. Очень часто на хабре я вижу статьи в стиле «5 правил оформления кода» или «5 шагов к успешному проекту», то есть очень удобные собрания тезисов по определенной теме. К сожалению подобных статей по разработке электроники мало и это плохо…

Я обещал пользователю KSVl и некоторым другим читателям, статью с базовыми принципами проектирования печатных плат (ПП), так же приглашаю к ознакомлению всех любителей попаять за чашечкой кофе!



Пролог


Все описанные в статье правила, являются самыми базовыми и ориентированы исключительно на совсем начинающих разработчиков для которых электроника просто хобби. Сразу хочу отметить, что данная статья не претендует на абсолютную истину и все объяснения даны в вольной форме.

Наверняка найдутся люди, которые скажут: «Да и так ведь работает, зачем что-то менять?». И вот тут увы, я не готов тратить силы и переубеждать вас. Одни хотят все делать хорошо, качественно и надежно, другим же не дано понять этого желания.

Источники информации на которых базируются описанные в статье правила:

  1. Курс общей физики и электротехники. Все в пределах 1-го курса ВУЗа
  2. Книги Говарда Джонса «Конструирование высокоскоростных цифровых устройств: начальный курс черной магии» и «Высокоскоростная передача цифровых данных: высший курс черной магии»
  3. Стандарты IPC, например, IPC-2221A. Бывает перевод на русском (старая версия) и оригинал последних версий на английском
  4. Собственный опыт

Правило №1 — Ширина проводника


Ошибка — очень часто начинающие разработчики используют ту ширину проводников (дорожек), которая стоит по умолчанию в используемой САПР. В упомянутой ранее статье, автор использовал EasyEDA и там базовое значение ширины стоит 6 mils, то есть около 0.15 мм. Данная ширина проводников использована практически везде и это плохо, ибо ведет к ряду проблем.

Проблема №1 — падение напряжения. Все мы помни закон Ома из которого следует, что чем меньше площадь сечения проводника, тем больше его сопротивление. Чем больше сопротивление проводника, тем больше на нем упадет напряжение.

Проблема №2 — нагрев проводника. Тут все тот же закон Ома, мощность выделяемая на проводнике пропорциональна его сопротивлению, то есть чем больше сопротивление, тем больше тепла выделится на проводнике. Дорогу 0.15 мм ток в 5-10А легко испарит.

Проблема №3 — паразитная индуктивность. Этот момент к базовым вряд ли уже относится, но знать про него надо. Чем меньше сечение проводника, тем больше его индуктивность. То есть любой проводник на самом деле не просто «кусок меди», это составной компонент из активного сопротивления, индуктивности и паразитной емкости. Если эти параметры слишком высоки, то они начинают негативно отражаться на работе схемы. Чаще они проявляются частотах больше 10 МГц, например, при работе с SPI.

Проблема №4 — низкая механическая прочность. Думаю не надо объяснять, что дорожка шириной 2 мм более прочно прикреплена к текстолитовой основе, чем дорожка 0.15 мм. Ради интереса возьмите заводскую ненужную плату и поковыряйте ее.

Решение — используйте максимально возможную ширину проводников. Если проводник можно провести с шириной 0.6 мм, то это лучше, чем провести его шириной 0.15 мм.

Пример:

1) Плохо

2) Хорошо

Правило №2 — Подключение к выводам


Под выводами подразумевается контактная площадка компонента (pad), переходные отверстия (via) и прочие объекты, которые на плате мы соединяем с помощью проводников (дорожек).

Ошибка — бывают две крайности. В одной, разработчик совершает ошибку из правила №1 и подключает дорожку 0.15 мм к выводу smd резистора 1206. В другом случае наоборот, использует проводник ширина которого равна ширине контактной площадки. Оба варианта плохие.

Проблема №1 — низкая механическая прочность. При нескольких попытках перепайки компонента, площадка или дорожка просто отслоятся от текстолитовой основы печатной платы.

Проблема №2 — технологические проблемы с монтажом платы. Хотя это станет проблемой, если вы начнете заказывать в Китае не только платы, но и сборку. Вам конечно соберут, но % брака вырастает.

Решение — ширина проводника, подключаемого к контактной площадке, должна составлять примерно 80% от ширины этой площадки.

Пример:

1) Плохо

2) Хорошо

Размер площадки конденсатора 1206 в данном случае составляет 1.6 х 1 мм. Соответственно для подведения сигнала снизу используется дорожка равная 80% от ширины площадки, то есть 0.8 мм (80% от 1 мм). Для подведения сигнала справа используется дорожка толщиной 1.2 мм (примерно 80% от 1.6 мм). Ширина площадки у микросхемы в корпусе SOIC-8 равна 0.6 мм, поэтому подводить нужно сигнал с помощью дорожки около 0.5 мм.

Стоит понимать, что данный вариант является идеальным. Переход из 1.2 мм в 0.5 мм вам наверняка не понравится — лишняя возня. Его можно избежать. Для этого обычно принимают ширину дорожки относительно минимального pad-а (площадки), то есть в данном случае можно сделать вот так:

Как видите, я выбрал ширину проводника по минимальной площадке, то есть по площадке вывода микросхемы в корпусе SOIC-8. Такой упрощение допустимо, но его стоит применять с умом.

Правило №3 — Цепи питания


Теперь рассмотрим случай, когда упрощение в отношение правила №2 просто недопустимо, а именно — проектирование цепей питания. Данной правило опирается на два предыдущих и является частным, но пожалуй самым критичным случаем.

Ошибка — пренебрежение правилами №1 и №2 при проектирование цепей питания.

Проблема №1 — на выходе вашего стабилизатора напряжения строго +3.3В. Вы включаете устройство и наблюдаете, что микросхема ведет себя неадекватно, АЦП измеряет не точно и периодически выключается. Вы измеряете напряжение на ногах потребителя (микросхемы) и обнаруживаете вместо +3.3В всего лишь +2.6В.

Проблема №2 — ваш DC-DC преобразователь не запускается, либо на выходе имеет большие пульсации.

Проблема №3 — в попытках найти неисправность, вы ставите щуп осциллографа на линию +3.3В и обнаруживаете там вместо постоянного напряжения какие-то страшные пульсации и помехи.

Решение — соблюдаем особо строго и фанатично правила №1 и №2. Дорожки максимально широкие. Питание должно приходить на микросхему через керамический конденсатор, который по возможности ставят ближе к выводу этой микросхемы.

Пример:

1) Плохо

2) Хорошо

Что я сделал чтобы стало хорошо:

1) Дорожка питания VCC3V3 теперь подходит не в обход конденсатора, а через него. То есть сначала на конденсатор, а затем уже на вывод микросхемы

2) Переходное отверстие (via) я использовал размером 1.2/0.6 мм. Да, согласно требованиям для 4 класса точности (стандартного), я могу использовать переходное отверстие размером 0.7/0.3 мм, но делать этого не стал и применил более габаритный переход. Это позволило уменьшить его сопротивление и пропустить больший ток

3) Шина питания, которая приходит от стабилизатора у меня теперь не 0.3 мм, а 2 мм! Не бойтесь делать широкие проводники. Такой подход минимизирует падение напряжения в цепи и уменьшит индуктивность проводника

Правило №4 — Земля


О влияние качества проектирование земляной шины (GND) можно говорить вечно, но любой разговор сводится к простой сути: стабильно и работоспособность устройства в наибольшей степени зависит именно от проектирование земли. Данная проблема очень объемная и требует глубокого изучения, поэтому я дам самые базовые рекомендации.

Ошибка — трассировка цепи GND (земли) обычным проводником, да еще и минимальной ширины. Это просто к-к-к-комбо!

Проблема №1 — нестабильность работы устройства и сильные помехи в цепях, особенно в цепях питания.

Проблема №2 — нагрев и часто обрыв тонкого проводника, т.к. в нем действует большой ток.

Решение — использовать полигон для разводки цепи GND, а в идеале отдельный слой, который полностью выделен для данной цепи, например, нижний слой.

Пример:

1) Плохой

2) Хороший

Как видите, вместо обычного проводника я применил заливку сплошным полигоном. Такое решение обеспечило мне огромную площадь сечения, ведь полигон это просто очень большой проводник. Только иногда такое решение имеет недостаток, например, когда плотность монтажа высокая и другие проводники разрывают сплошной полигон, как тут цепи LED1..3 разрывают кратчайший путь между выводом микросхемы и конденсатора (GND):

Тут нам поможет, упомянутый ранее, отдельный слой GND. В двухслойной плате в идеале под него выделить нижний слой, а в многослойной плате — один из внутренних слоев:

Таким образом мы восстановили кратчайший путь для тока по цепи GND, а помог в данном случае нижний слой (синий цвет), который из себя полностью представляет земляной полигон. Переходные отверстия (via) около контактных площадок обеспечили для них максимально короткое соединение с нижним слоем земли.

Конечно это идеальный случай и иногда не получится его реализовать без удорожания платы, поэтому тут решение за вами. Порой «супер» надежность и не нужна, тут важно найти для своей задачи золотую середину между стоимостью и качеством.

Правило №5 — Ширина зазора


Минимальное значение зазора между медными проводниками на печатной плате, нам диктуют технологические требования. Для 4-го (стандартного) класса значение составляет 0.15/0.15 мм или 6/6 mils. Максимальная ширина ограничена лишь вашей фантазией, габаритами платы и здравым смыслом.

Ошибка — зазор недостаточно большой, обычно оставляют значение по умолчанию около 0.15 мм.

Проблема №1 — электрический пробой. Короткое замыкание возникает, когда 2 проводника с разным потенциалом замыкают, например, металлическим предметом и ток резко возрастает. К сожалению идеальных диэлектрических материалов не бывает и в какой-то момент любой материал начинает проводить ток. Пример тому — изоляторы на ЛЭП, иногда и их пробивает. Данное явление происходит, когда превышено значение критического напряжения пробоя. По этой же причине и стеклотекстолит, являющийся основной большинства печатных плат, в какой-то момент может начать пропускать ток.

Решение — увеличение расстояния между проводниками. Напряжение пробоя зависит от типа материала и от толщины/ширины изолятора. В случае печатных плат — расстояние (зазор) между проводниками как раз является тем параметром, который влияет на критического значение напряжения пробоя. Чем больше расстояние между проводниками, тем большее напряжение необходимо чтобы пробить его.

Так же хочется сказать, что пробой по стеклотекстолиту не всегда самая актуальная проблема. Воздух, который окружает плату, тоже является диэлектриком, но при определенных условиях становится проводником, вспомните грозу. Воздушный электрический пробой большая проблема в электронике, особенно если учитывать, что воздух может быть сухой, а может и иметь влажность 90-100%, например, в тропиках или на Севере.

Пример:

Условимся, что в данном примере есть 3 проводника: выпрямленное сетевое напряжение +310В, низковольтная линия питания для микроконтроллера +3.3В и шина земли (GND).

1) Плохой

2) Хороший

Почему 0.3 мм плохо, а 0.8 мм уже хорошо спросите вы и в качестве ответа приведу вам 2 источника:

1) Обычные физика и электротехника. Данные в них разнятся из-за различных методик измерений и прочего, но наиболее реалистичная цифра для сухого воздуха составляет 2 кВ/мм. Тут многие испугаются цифры и подумают: «У меня же нет таких напряжений» и это будет ошибкой. Данное значение характерно лишь для сухого воздуха, который встретить в реальных условиях удается редко. И тут цифры уже куда скромнее, например, при влажности 100% напряжение пробоя воздуха составляет всего 250 В/мм! А еще на значение напряжения пробоя влияет запыленность воздуха и платы, а так же атмосферное давление (кривая и закон Пашена).

2) Стандарт IPC-2221, ссылку на который я давал в начале. Интересует нас таблица 6-1, которая выглядит вот так:

Как видите в таблице для большое количество значений даже для нашего конкретного случая 301-500В. Если посмотрим, то увидим значение 0.25 мм для закрытых проводников на внутренних слоях, то есть в «идеальных» условиях без доступа пыли, грязи и влаги. Если устройство будет работать где-то в горах и проводник находится на внешних слоях (все проводники в случае 2-х слойной платы) на высоте до 3000 метров, то там минимальный зазор уже 2,5 мм, то есть в 10 раза больше. Если же мы эксплуатируем устройство на большей высоте, то зазор необходим уже в 12.5 мм! Стоит сделать замечание — такой большой зазор требуется если наша плата не покрыта защитными составами, например, лаком или компаундом. Как только появляется защитное покрытие, то мы видим уже более адекватные значения: 0.8 и 1.5 мм.

Поэтому в «хорошем» примере по мимо обеспечения зазора 0.8 мм, необходимо так же покрыть плату защитных составом, например, лаком после завершения монтажа устройства, его отмывки и сушки. В противном случае необходимо увеличить зазор!

Правило №6 — Гальванический зазор


Ошибка — приравнивание диэлектрического зазора к гальваническому. По сути они очень похожи, но по требованиям все строже, когда дело доходит до гальванической развязки. Ярким случаем является развязка схемы управления и силовой части с помощью реле или оптрона, когда зазор между развязанными сторонами выбирается так же 0.8 или 1,5 мм.

Проблема №1 — пробой изоляции, выход из строя системы управления и прочего дорогого оборудования.

Решение — увеличение порога электрического пробоя. Стандартными значениями обычно являются напряжения 1,5 кВ, 2,5 кВ и 4 кВ. Если ваше устройство работает с сетевым напряжением, но человек напрямую с ним не взаимодействует, то напряжение развязки в 1,5 кВ будет достаточным. Если предполагается взаимодействие человека с устройством, например, через кнопки и прочие органы управления, то рекомендую применить изоляцию с напряжением 2,5 кВ и более.

Пример:

1) Плохой

Что плохого спросите вы, ведь зазоры на плате есть, их можно сделать и 1,5 мм. Дело в том, что даже если сделать зазор 2 мм, то этого будет недостаточным для обеспечения изоляции. Самым «слабым» местом должно быть расстояние между выводами управления реле (1-2) и выводами силовыми (3-8). Так же надо учитывать, что пробой может быть не только между проводниками на одном слое, но и на разных — насквозь плату через стеклотекстолит.

2) Хороший

Что было сделано для улучшения ситуации:

а) Появилась четкая граница между низковольтной и высоковольтной частью. Теперь проводник +3.3В не проходит в высоковольтной области +310В, полигон GND не выходит за границу низковольтной часть, соответственно и пробоя не будет. Так же в зоне/границе гальванической развязки не должно быть вообще ничего.

б) Изолирующая зона освобождена от паяльной маски. Маска — тоже слабое место и в зависимости от качества ее пробьет раньше, чем стеклотекстолит. Это делать не обязательно в общем случае, но если с устройством взаимодействуют люди, то настоятельно рекомендую.

в) Как я выше писал, слабое место — расстояние между управляющими и силовыми выводами реле. Везде я смог сделать изолирующую зону 4 мм, а тут только 2.5 мм. От маски мы очистили, от проводников тоже и единственное через что может произойти пробой по плате — стеклотекстолит. Поэтому убираем и его, я сделал вырез под реле шириной 2.5 мм и убрал весть текстолит между выводами. Данная операция тоже не обязательна, но существенно повышает надежность и безопасность вашего устройства.

Правило №7 — Переходные отверстия


Ошибка — очень часто наблюдаю картину, когда на 2-х слойной печатной плате для того, чтобы соединить 2 контактные площадки, использую 3..4… или даже 5 переходных отверстий.

Проблема №1 — переходных отверстий (via) становится слишком много на плате и это ограничивает место под проводники, что приводит к удлинению цепей, а следовательно и к увеличению их сопротивления. Уменьшает устойчивость цепей и сигналов к помехам.

Решение — используйте минимальное количество переходных отверстий: если вам нужно соединить 2 контакта на разных слоях, то не используйте более 1-го переходного отверстия. Если 2 контакта находятся на одном слое и вы не можете соединить их напрямую, то используйте максимум 2 переходных отверстия. Если вам нужно больше переходов для соединения, то что-то вы делаете не так — тренируйте логику и переразводите участок платы, который привел к проблеме.

Пример:

1) Плохо

2) Хорошо

Для соединения использовано минимальное количество переходных отверстий (via), что дает больше свободного места для других проводников и обеспечивает минимальные паразитные параметры проводника.

Несколько общих советов


  • Не используйте автотрассировщики! В «сыром» не настроенном виде они выдают ужасный результат, который даже самую светлую идею превратит в гуано. Для того, чтобы автотрассировщик работал хорошо, ему необходимо прописать определённые правила, которые скажут ему, что дороги надо не 0.15, а 1 мм и так далее. Для адекватного результат даже на простых платах приходится прописывать сотню, а то и две, этих самих правил. В Altium Designer под них выделен целый раздел, например. Если вы любитель и у вас не стоит задачи спроектировать свою плату для ноутбука, то разводите плату руками — выйдет быстрее и качество будет на высоте
  • Не ленитесь переделывать плату. Часто бывает, что вы сделали плату на 90%, но дальше все стало туго и вы начинаете нарушать «правила» и лепить гуано. Откатитесь назад, иногда приходится откатываться в самое начало, сделайте работу качественно и на этапе отладки устройства вы сэкономите очень много времени и нервов
  • Перед тем как начать проектировать плату, посмотрите несколько open source проектов, например, на хабре или hackaday. Главное не копируйте оттуда чужие очевидные ошибки
  • Если у вас есть знакомые разработчики электроники, пускай тоже любители — дайте им на проверку. Свежий взгляд на ваш проект позволит избежать очень много ошибок

Заключение


Надеюсь данная статья станет полезной для начинающих электронщиков и избавит их хотя бы от самых простых ошибок. Думаю не мало людей в данных правилах увидят и свои недочеты, но не стоит от этого правила слепо копировать. Всегда думайте головой и ищите лучший вариант, иногда и 4 переходных отверстия для 1-й цепи допустимы, если это позволяет вам улучшить конечный результат.

Те, кому данного материала мало — предлагаю ознакомиться со стандартами IPC по диагонали, сильно вчитываться смысла нет, а так же прочитать начальный курс «черной магии» от Говарда Джонса. В ней разобраны и физические принципы проектирования, а так же приводится множество рекомендаций по проектированию стандартных цепей и интерфейсов. Это раньше высокоскоростные цифровые цепи были чем-то магическим и возвышенным, но сегодня на дворе 2018 и с ними сталкиваются даже совсем новички, например, при подключение датчиков и памяти по SPI или дисплеев.

habr.com

Как изготовить печатную плату в домашних условиях

Печатная плата – это диэлектрическое основание, на поверхности и в объеме которого нанесены токопроводящие дорожки в соответствии с электрической схемой. Печатная плата предназначена для механического крепления и электрического соединения между собой методом пайки выводов, установленных на нее электронных и электротехнических изделий.

Операции по вырезанию заготовки из стеклотекстолита, сверлению отверстий и травление печатной платы для получения токоведущих дорожек в независимости от способа нанесения рисунка на печатную плату выполняются по одинаковой технологии.

Технология ручного способа нанесения
дорожек печатной платы

Подготовка шаблона

Бумага, на которой рисуется разводка печатной платы обычно тонкая и для более точного сверления отверстий, особенно в случае использования ручной самодельной дрели, чтобы сверло не вело в сторону, требуется сделать ее более плотной. Для этого нужно приклеить рисунок печатной платы на более плотную бумагу или тонкий плотный картон с помощь любого клея, например ПВА или Момент.

Далее плотная бумага вырезается по контуру приклеенного рисунка и шаблон для сверления готов.

Вырезание заготовки

Подбирается заготовка фольгированного стеклотекстолита подходящего размера, шаблон печатной платы прикладывается к заготовке и обрисовывается по периметру маркером, мягким простым карандашом или нанесением риски острым предметом.

Далее стеклотекстолит режется по нанесенным линиям с помощью ножниц по металлу или выпиливается ножовкой по металлу. Ножницами отрезать быстрее, и нет пыли. Но надо учесть, что при резке ножницами стеклотекстолит сильно изгибается, что несколько ухудшает прочность приклейки медной фольги и если потребуется перепайка элементов, то дорожки могут отслоиться. Поэтому если плата большая и с очень тонкими дорожками, то лучше отрезать с помощью ножовки по металлу.

Приклеивается шаблон рисунка печатной платы на вырезанную заготовку с помощью клея Момент, четыре капли которого наносятся по углам заготовки.

Так как клей схватывается всего за несколько минут, то сразу можно приступать к сверлению отверстий под радиодетали.

Сверление отверстий

Сверлить отверстия лучше всего с помощью специального мини сверлильного станка твердосплавным сверлом диаметром 0,7-0,8 мм. Если мини сверлильного станка в наличии нет, то можно просверлить отверстия маломощной дрелью простым сверлом. Но при работе универсальной ручной дрелью количество переломанных сверл будет зависеть от твердости Вашей руки. Одним сверлом точно не обойдетесь.

Если сверло зажать не удается, то можно его хвостовик обернуть несколькими слоями бумаги или одним слоем наждачной шкурки. Можно на хвостовик намотать плотно виток к витку тонкой металлической проволочки.

После окончания сверления проверяется, все ли просверлены отверстия. Это хорошо видно, если посмотреть на печатную плату на просвет. Как видно, пропущенных отверстий нет.

Нанесение топографического рисунка

Для того, чтобы места фольги на стеклотекстолите, которые будут токопроводящими дорожками, защитить при травлении от разрушения, их необходимо покрыть маской, устойчивой к растворению в водном растворе. Для удобства рисования дорожек, их лучше предварительно наметить с помощью мягкого простого карандаша или маркера.

Перед нанесением разметки нужно обязательно удалить следы клея Момент, которым приклеивался шаблон печатной платы. Так как клей не сильно затвердел, то его легко можно удалить, скатав пальцем. Поверхность фольги так же нужно обязательно обезжирить с помощью ветоши любым средством, например ацетоном или уайт-спиртом (так называется очищенный бензин), можно и любым моющим средством для мытья посуды, например Ферри.

После разметки дорожек печатной платы можно приступать к нанесению их рисунка. Для рисования дорожек хорошо подходит любая водостойкая эмаль, например алкидная эмаль серии ПФ, разведенная до подходящей консистенции растворителем уайт-спиртом. Рисовать дорожки можно разными инструментами – стеклянным или металлическим рейсфедером, медицинской иглой и даже зубочисткой. В этой статье я расскажу, как рисовать дорожки печатных плат с помощью чертежного рейсфедера и балеринки, которые предназначены для черчения на бумаге тушью.

Раньше компьютеров не было и все чертежи чертили простыми карандашами на ватмане и затем переводили тушью на кальку, с которой с помощью копировальных аппаратов делали копии.

Нанесение рисунка начинают с контактных площадок, которые рисуют балеринкой. Для этого нужно отрегулировать зазор раздвижных губок рейсфедера балеринки до требуемой ширины линии и для установки диаметра круга выполнить регулировку вторым винтом отодвинув рейсфедер от оси вращения.

Далее рейсфедер балеринки на длину 5-10 мм наполняется с помощью кисточки краской. Для нанесения защитного слоя на печатную плату лучше всего подходит краска марки ПФ или ГФ, так как она медленно высыхает и позволяет спокойно работать. Краску марки НЦ тоже можно применять, но работать с ней сложно, так как она быстро сохнет. Краска должна хорошо ложиться и не растекаться. Перед рисованием красу нужно развести до жидкой консистенции, добавляя в нее понемногу при интенсивном перемешивании подходящий растворитель и пробуя рисовать на обрезках стеклотекстолита. Для работы с краской удобнее всего ее налить во флакон от маникюрного лака, в закрутке которого установлена кисточка, устойчивая к растворителям.

После регулировки рейсфедера балеринки и получения требуемых параметров линий можно приступить к нанесению контактных площадок. Для этого острая часть оси вставляется в отверстие и основание балеринки проворачивается по кругу.

При правильной настройке рейсфедера и нужной консистенции краски вокруг отверстий на печатной плате получаются окружности идеально круглой формы. Когда балеринка начинает плохо рисовать, из зазора рейсфедера тканью удаляются остатки подсохшей краски и рейсфедер заполняется свежей. чтобы обрисовать все отверстия на этой печатной плате окружностями понадобилось всего две заправки рейсфедера и не более двух минут времени.

Когда круглые контактные площадки на плате нарисованы, можно приступать к рисованию токопроводящих дорожек с помощью ручного рейсфедера. Подготовка и регулировка ручного рейсфедера не отличается от подготовки балеринки.

Единственное, что дополнительно понадобится, так это плоская линейка, с приклеенными на одной из ее сторон по краям кусочками резины, толщиной 2,5-3 мм, чтобы линейка при работе не скользила и стеклотекстолит, не касаясь линейки, мог свободно проходить под ней. Лучше всего подходит в качестве линейки деревянный треугольник, он устойчив и одновременно может служить при рисовании печатной платы опорой для руки.

Чтобы печатная плата при рисовании дорожек не скользила, желательно ее разместить на лист наждачной бумаги, представляющий собой два склепных между собой бумажными сторонами наждачных листа.

Если при рисовании дорожек и окружностей они соприкоснулись, то не стоит принимать никаких мер. Нужно дать краске на печатной плате подсохнуть до состояния, когда она не будет пачкать при прикосновении и с помощью острия ножа удалить лишнюю часть рисунка. Чтобы краска быстрее высохла плату нужно расположить в теплом месте, например в зимнее время на батарею отопления. В летнее время года - под лучи солнца.

Когда рисунок на печатной плате полностью нанесен и исправлены все дефекты можно переходить к ее травлению.

Технология нанесения рисунка печатной платы
с помощью лазерного принтера

При печати на лазерном принтере происходит перенос за счет электростатики образованного тонером изображения с фото барабана, на котором лазерный луч нарисовал изображение, на бумажный носитель. Тонер удерживается на бумаге, сохраняя изображение, только за счет электростатики. Для закрепления тонера бумага прокатывается между валиками, один из которых является термопечкой, разогретой до температуры 180-220°C. Тонер расплавляется и проникает в текстуру бумаги. После остывания тонер отвердевает и прочно удерживается на бумаге. Если бумагу опять нагреть до 180-220°C, то тонер опять станет жидким. Это свойство тонера и используется для переноса изображения токоведущих дорожек на печатную плату в домашних условиях.

После того, как файл с рисуночком печатной платы готов, необходимо его распечатать с помощью лазерного принтера на бумажный носитель. Обратите внимание, изображение рисунка печатной платы для данной технологии должно иметь вид со стороны установки деталей! Струйный принтер для этих целей не подходит, так как работает на другом принципе.

Подготовка бумажного шаблона для переноса рисунка на печатную плату

Если напечатать рисунок печатной платы н

ydoma.info

Электрическая схема по печатной плате

Самым распространенным вопросом при ремонте любого электронного прибора является «а есть ли схема?». Действительно, если прибор незнакомый или схематехника его ставит в тупик, то нужна схема. Конечно, если банально сгорел предохранитель или выгорел транзистор – тогда все понятно и без схемы. Но существует масса глюков, которые можно найти только при помощи отключения разных участков схемы или замены одних блоков другими заведомо исправными. Схемы обычно гуглятся благодаря огромной армии радиолюбителей, но встречаются платы по которые совсем ничего не удается найти. Метод который описан в этой статьи банален и неинтересен, но поможет тем, кто в лоб составляет принципиальную электрическую схему имея под рукой только плату с деталями. Сразу оговорюсь, что этот метод подходит для однослойных печатных плат. Самым распространенным методом составления схемы в лоб является верчение платы вокруг своей оси и постоянной зарисовкой дорожек и элементов. Для людей с хорошей зрительной памятью и пространственным мышлением составление таких схем не представляет трудностей. Для всех остальных процесс верчения платы можно оптимизировать в программе photoshop.

Для образчика я взял небольшую схему управления скоростью комповского кулера. Схему нужно сфоткать с обеих сторон – это итак понятно. Проблемы возникающие при этом все же встречаются. Первая проблема – закрытость отдельных деталями либо другими деталями, либо радиаторами. Если это так, то придется снять радиаторы и подогнуть все элементы так, чтобы при взгляде они были все видны. Вторая проблема – сделать снимки с одинакового расстояния. Эту проблему можно обойти при помощи инструментов фотошопа, но нужно стараться фотографировать с одной высоты и под одним ракурсом. Это все нужно чтобы обе фотки наложились друг на друга достаточно точно.

Фотки получились вот такого вида. Когда фоткал, то смотрел чтобы плата влезала ровно в одну ячейку решетки на экране фотика.

Схема содержит немного деталей, один транзистор скрыт электролитическим конденсатором.

Вначале нужно немного подстроить под себя photoshop. Идея в том чтобы иметь под рукой инструменты, которые нужны для работы. У меня shop CS3 английский. Для тех у кого закладки на русском в скобках приведу порядковый номер закладок, а то русские переводчики часто вообще все никак переводят.

Windows(9)-tools(23) – слева отобразится вертикальная полоска с инструментами.

Windows(9)-layers(14) – справа отобразиться панель слоев.

После всех настроек можно перетянуть в окно программы две обрабатываемые фотки.

Одну из фоток нужно отобразить по горизонтали. Это необходимо чтобы наложить одну фотку на другую.

Теперь нужно перетянуть фотку с элементами на фотку печатной платы. При этом печатная плата будет внизу и просвечивать через верхнюю плату с элементами.

При этом образуется одна фотка с двумя слоями. При этом один слой оказывается заблокированным – в панели слоев напротив одного слоя светится замочек. Чтобы замочек убрать нужно в панели слоев мышой два раза тиснуть на слое и в открывшейся панели согласится с тем, что предлагает программа. После этого замочек пропадет, а слой разблокируется.

Получилось одна фотка с двумя слоями. При этом отображается та фотка, которая сверху. Задача в том, чтобы сделать прозрачной фотку с деталями, чтобы сквозь детали проступили дорожки нижней платы. Это можно сделать при помощи панели слоев (layers). Нужно выделить слой с элементами и при помощи ползунка Opacity меняем прозрачность слоя. Лучше выставить 50% Opacity.

При съемке размеры обоих плат могут плавать. Следовательно, при наложении не будет четкого соответствия. Для изменения размеров одного слоя нужно воспользоваться Edit(2)-free transform(15) {Ctrl+T}. Размеры самой платы будут плавать. Чтобы размеры подгонялись пропорционально нужно удерживать кнопку shift. Для подтверждения изменений нужно нажать enter.

Когда оба платы наложены друг на друга и ножки элементов совпадают с точками на схеме, тогда можно перерисовать дорожки. Для этого нужно выставить opacity 0, отобразиться только слой с дорожками и на нем при помощи line tool {U} нарисовать линии и кружки.

Затем нужно вывести opacity 100%, отобразиться слой с элементами и нарисованными дорожками. После этого получившееся изображение можно сохранять и перерисовывать схему в более удобный для понимания вид.

www.volt-220.com

Печатная плата электроники – инструкция изготовления

Главная страница » Печатная плата электроники – инструкция изготовления

Практика конструирования и монтажа, напрямую связанная с электроникой, никак не обходится без главной детали – печатной платы. Начальная разработка какого-нибудь электронного устройства, конечно, допустима с помощью навесного монтажа. Однако полноценную печатную плату всё равно придётся делать, если речь идёт о серьёзном электронном устройстве. Существуют два варианта: заказать изготовление печатной платы в сервисе или сделать печатную плату своими руками непосредственно дома. Первый вариант требует солидных финансовых вложений и двух-трёх недель ожидания. Второй не требует ничего, кроме личного желания, куска фольгированного текстолита и небольшого количества хлорного железа.

Содержимое публикации

Практика печати на фольгированном текстолите

Листовой текстолит, ламинированный по одной или обеим сторонам тонким слоем меди, традиционно используется для изготовления печатных электронных плат.

Обычно жёсткая основа с разводкой электронных схем под пайку электронных деталей – это приоритеты специализированной производственной сферы.

Однако конструирование электроники для личных нужд и в малых экземплярах выглядит более рационально, когда технология производства «печаток» доступна в условиях быта.

Вот такой результат работы вполне возможно получить в домашних условиях, используя простые доступные средства, инструменты, материалы

Если же освоить все тонкости производства и запастись необходимым материалом, не исключается изготовление печатных плат дома, если не в промышленных масштабах, так в количествах достаточных для бизнеса.

Существует несколько технологий прорисовки и травления миниатюрных дорожек на фольгированном текстолите. Начиная от метода простого рисунка электронной схемы лаком для ногтей с последующим химическим травлением, и заканчивая автоматической лазерной разводкой и микронной резкой.

Однако для домашних условий требуется методика особая – эффективная, но одновременно бюджетная и относительно несложная.

Изготовление печатных плат в домашних условиях

Здесь – в рамках своего рода учебного пособия, рассматривается процесс изготовления печатных плат с использованием технологии переноса тонера лазерным принтером.

Этот метод разработан давно, но до сих пор сопровождается массой новых советов и приемов, благодаря которым эффективность только повышается.

Что потребуется домашнему электронщику?

  • программа разработки дизайна,
  • лазерный принтер,
  • любой глянцевый журнал,
  • утюг бытовой,
  • одна-две пластиковых тары,
  • небольшая кисточка или зубная щетка,
  • резиновые перчатки,
  • хлорное железо,
  • фольгированный текстолит.

Практически все компоненты списка можно найти в бытовом хозяйстве. Исключение составляют: хлорное железо и текстолит с фольгой.

Два материала: хлорид железа и фольгированный текстолит, которые потребуется купить. Всё остальное обычно имеется в наличии среди предметов и материалов домашнего хозяйства

Эти два пункта списка закрываются через посещение радиоэлектронного магазина или радио-рынка. Такие торговые точки имеются в любом среднем по величине населённом пункте. В крайнем случае, можно заказать оба компонента через интернет.

 

Между тем, хлорное железо вполне заменимо другим химическим веществом, полученным на основе смеси медного купороса (МК) и обычной поваренной соли (ПС). Смесь делается в соотношении 1 часть МК на 2 части ПС, разведённых в 0,5 л кипятка.

Обычно на изготовление средней по размерам электронной печатной платы достаточно взять 4 столовых ложки МК и 2 столовых ложки ПС. Залитую кипятком порошковую смесь тщательно размешать и дать отстояться.

Единственное отличие такого раствора от FeCl3 – несколько увеличенное время травления. Но с другой стороны – смесь на медном купоросе безопаснее FeCl3. Медный купорос (порошковый) доступен в любом хозяйственном магазине.

Создание дизайна печатной платы

Для создания дизайна рисунка ПП оптимальной видится компьютерная программа «KiCad» – профессиональное средство рисования электронных печатных плат, но при этом бесплатное.

Программное обеспечение «KiCad» обеспечивает пользователя функцией маршрутизации кисти, благодаря чему легко разводить дифференциальные пары, интерактивно настраивать длину трассировки.

Рабочее окно программы KiCad — профессионального средства разводки, без которого никак не обойтись в процессе изготовления печатной платы. ПО распространяется бесплатно

С помощью редактора схем создаётся дизайн без ограничений. Имеется обширная библиотека схемной символики. Также встроенный редактор схем позволяет без особых трудностей освоить работу с проектами.

Всё, что нарисовано программой красным цветом принадлежит фронтальной поверхности. Линии жёлтого цвета, является рисунком обратной стороны печатной платы.

Созданный рисунок необходимо экспортировать в pdf формат. Для этого у «KiCad» есть инструмент «Plot». Применяя «Plot», следует выбрать зеркальное отображение.

Печать рисунка разводки на принтере

После получения файла печатной платы в формате «pdf», нужно распечатать проект на лазерном принтере. Для выполнения этой операции подойдёт страница любого глянцевого журнала.

Страница  вставляется в лоток ручной подачи лазерного принтера. Наряду с журнальной, допустимо применить обычную глянцевую бумагу. Не стоит беспокоиться относительно уже существующих изображений на журнальной странице. Они не помешают.

Отпечаток тонера на глянцевой странице журнала. Как видно из рисунка, качество печати достаточно высокое. Такой же след должен получиться на фольге печатной платы

Фактор присутствия сторонних изображений не оказывает никакого влияния на процесс. Рисунок тонером принтера в любом случае остаётся на глянцевой поверхности страницы журнала (бумаги). А это именно тот результат, который требуется получить.

Желательно дважды (на двух разных страницах) провести печать, чтобы удостовериться, что напечатанный рисунок не имеет пятен, мазков, иных дефектов.

Если печать выходит с пятнами, рекомендуется использовать страницу другого журнала и повторить попытку. Необходимо получить максимально качественный результат печати.

Перенос разводки с принтера на фольгу

Если след разводки печатной платы качественно выдан лазерным принтером, глянцевую страницу журнала с полученным оттиском следует аккуратно извлечь из принтера и поместить рисунком вниз на медную поверхность текстолита.

Предварительно медное покрытие рекомендуется зачистить шкуркой-нулевкой и обезжирить техническим спиртом. Затем включают в сеть бытовой утюг на максимум нагрева, прогревают инструмент глажки белья до отключения автоматикой.

Термическая обработка печатной платы с помощью обычного хозяйственного утюга. Температура нагрева — максимум. Иначе страдает качество переноса

Нагретой подошвой утюга прижимают журнальный лист с напечатанной разводкой схемы к поверхности фольгированного текстолита. Выдерживают утюг на листе без движений в течение примерно 30 секунд.

Далее необходимо плавными круговыми движениями разгладить утюгом поверхность листа в течение 2-3 минут. За этот промежуток времени термальной обработкой, тонер  намертво прилипает к медному покрытию текстолита.

Результат переноса оттиска тонера от журнальной страницы на медное покрытие текстолита. Выглядит не хуже варианта промышленного изготовления

Завершением процесса переноса отпечатка на медную фольгу текстолита является удаление приклеенного листа журнала. Здесь требуется терпение и аккуратность.

Облегчает операцию очистки текстолита от приклеенной бумаги ванночка с холодной водой, куда нужно поместить на время обрабатываемый объект.

Вода размягчает бумагу, чем обеспечивается полный съём остатков бумажных волокон. Тонер при этом остаётся на текстолите.

Травление печатной платы

Итак, рисунок схемы соединений нанесён на текстолит. Можно приступать к следующей части процесса – травлению излишек меди.

Травление меди в растворе хлорного железа. Химическое содержимое хлорида железа опасно. Поэтому следует применять защитные аксессуары

Для этого потребуется раствор хлорного железа, залитый в пластиковую ванну подходящих размеров.

Внимание! Раствор хлорида железа является опасной химией.

Обязательно следует проводить работы травления внутри хорошо проветриваемого помещения. Защитные аксессуары – резиновые перчатки и очки также обязательны.

Печатную плату рекомендуется оснастить ниткой, протянутой сквозь отверстие, высверленное в свободном углу заготовки. Этот аксессуар позволит вынимать периодически заготовку из раствора для контроля. Или же можно использовать пластиковый пинцет.

Среднее время травления хлорным железом составляет примерно 20-25 минут. Правда, конкретное значение времени во многом зависит от размеров заготовки и объёма меди, который требуется вытравить.

Как только свободная от печати медь будет вытравлена, печатную плату нужно извлечь из раствора и поместить в посуду с проточной водой.

Тщательная промывка готового продукта необходима обязательно. Если на поверхности останутся излишки хлорида железа, существует риск повреждения разводки

Оставшийся раствор хлорида железа следует перелить из ванночки в герметичную пластиковую ёмкость и плотно закрыть крышкой. Этот раствор допустимо использовать многократно.

Вытравленную печатную плату следует тщательно промыть водой, применяя мыльные средства. Далее останется только очистить медные дорожки печатной платы, сохранившиеся целыми под слоем тонера.

Здесь применима та же мелкозернистая шкурка или металлическая сетка. После очистки, печатная плата обрезается по требуемому размеру, грани выравниваются мелким рашпилем. Вот и всё – электронная печатная плата готова.

Таким способом доступно готовить непосредственно в домашних условиях разные по сложности электронные печатные платы, в том числе двухсторонние.

Нужно отметить вполне приличное качество производства печатных плат методом «журнальной» печати на лазерном принтере.

Ещё одна оригинальная методика изготовления печатных плат


zetsila.ru

РадиоКот :: Печатаем плату.

РадиоКот >Лаборатория >Радиолюбительские технологии >

Печатаем плату.

Да-да, именно так - печатаем.
Сейчас речь у нас пойдет о том, как сделать хорошую печатную плату при помощи лазерного принтера и утюга. В общем, поговорим о модной нынче лазерно-утюжной технологии изготовления печатных плат.
Технология, как выяснилось не только модная, но и весьма удобная и простая. Чтобы совместить приятное с полезным и не делать некую абстрактную плату, возьмем для примера схему простого бегущего огонька на 10 светодиодах с нашего сайта. Для нее и сварганим плату.
Прежде всего, что нам понадобится?

1. Разумеется фольгированный стеклотекстолит - одно- или двух- сторонний, неважно. Сейчас проблем с ним нет - продается в любом магазине радиодеталей или на рынке.
2. Любой журнал на "глянцевой" бумаге.
3. Инструмент для резки текстолита - лучше всего резак из ножовочного полотна.
4. Наждачная бумага "нулевка" или жесткая губка для чистки посуды из стальной проволоки.
5. Из химии: спирт, ацетон или растворитель, жидкий флюс для пайки, хлорное железо.
6. Ну и разумеется компьютер, лазерный принтер, паяльник, хорошее освещение и много терпения.
Вроде все.
Начинать надо, естественно, с проектирования этой самой платы.
Существует великое множество разнообразных программ, которые занимаются трассировкой (то есть разведением дорожек) печатных плат в ручном и автоматическом режиме. Лично я пока остановился на программе DipTrace отечественного производителя. Она позволяет рисовать не только платы, но и принципиальные схемы и библиотеки электронных компонентов. Но нас сейчас интересует исключительно платы.

Вот так выглядит эта программа и так выглядит уже готовый чертеж платы в ней.
Ну а дальше приступаем непосредственно к процессу изготовления и, дабы в нем не запутаться будем идти маленькими шажочками, итак:

Чертеж платы нам надо распечатать на лазерном принтере. В принципе, можно использовать струйный принтер, но в этом случае надо будет сделать ксерокопию чертежа и использовать уже её. Идея простая - нам нужен отпечаток чертежа на бумаге сделанный тонером (порошком), который используется в лазерных принтерах или ксероксах. Бумага нам нужна глянцевая - чаще всего, она используется в компьютерных журналах или разных рекламных буклетах. Я использовал журнал "Компьютерра", который очень люблю и уважаю за содержание, а теперь еще и за качественную бумагу, на которой он печатается.

Ничего чистить не надо - просто выдираем страницу и печатаем наш чертеж прямо поверх исходного текста.

Напечатайте сразу пару экземпляров - вдруг пригодится.
Напечатали, в связи с чем идем дальше.

Отрезаем необходимый нам по размерам кусок текстолита, готовим шкурку (губку) и ацетон с куском ваты или ватными дисками.

Берем шкурку или губку и начинаем тереть нашу заготовку со стороны фольги. Особо усердствовать не надо, но тем не менее, поверхность должна стать ровной и ярко блестящей, а не матовой, как была до этого. После берем кусок ваты, окунаем в ацетон или растворитель и протираем только что начищенную фольгу.
Должно получится что то вроде этого:

Должен сказать, что после того, как заготовка протерта ацетоном, её ни в коем случае нельзя хватать пальцами за фольгу - только за края, лучше даже двумя пальцами за уголки. Иначе вы должны будете заново протереть фольгу ацетоном.
Переходим к следующему шагу.

Прежде чем выполнять это шаг прочитайте до конца его описание.
Итак, из листа, на котором напечатан чертеж платы вырезаем кусок непосредственно с чертежом, оставляя при этом довольно большие поля по краям. После чего аккуратно накладываем нашу заготовку на чертеж (фольгой к напечатанным дорожкам, разумеется), заворачиваем поля и скрепляем их, например, малярным скотчем.
Должен получится вот такой конвертик:

Сделали? Отлично, переходим к самому ответственному шагу - глаженью утюгом.

Итак, берем утюг - совершенно любой.
Тефаль, Бош, Белорусский тракторный завод, с отпаривателем, без отпаривателя. Без разницы.
Регулятор температуры ставим на максимум (если у вас на утюге написаны названия тканей, то на "лён"). Кладем утюг на заготовленный конвертик.

Конвертик, разумеется, надо положить скотчем вниз. Начинаем аккуратно проглаживать. Это самая тонкая часть всей процедуры и кроме как на собственном опыте научится ей невозможно. Нажим на утюг должен быть не сильным - иначе тонер будет растекаться и размазываться по фольге, но и не слабым - иначе тонер плохо пристанет к заготовке. Короче говоря - тут широкое поле для экспериментов. В любом случае, прогревать надо равномерно всю поверхность будущей платы и особое внимание уделять краям - там наибольший риск непрогрева и последующего отслаивания тонера. Тоже относится и ко времени прогревания, хотя с этим проще.
Примерно степень готовности можно определить по пожелтению бумаги и по проступанию на ней очертаний дорожек.

Вот примерно, как на фотографии.
Ну, допустим, мы решили, что все готово. Выключаем утюг и оставляем плату примерно на 10 минут, чтобы она остыла. Наливаем воду в подходящую посудину. Температура воды должна быть такой, что в ней только-только можно было держать руку. Ну и бросаем туда нашу остывшую заготовку.

Все, идем курить, пить чай, гонять кота - все что угодно на 15 минут. Можно даже 20. Кстати, воду можно оставить включенной, дабы она не остывала.

Приходим обратно и начинаем аккуратно отделять бумагу от заготовки. Очень аккуратно и медленно. Оставшиеся после этого клочки скатываем пальцами. Ни в коем случае, не скребем когтями по плате, а нежно, подушечками пальцев очищаем фольгу от прилипшей бумаги. После чего, вооружаемся феном и сушим, сушим, сушим. На самом деле, все не так долго, потому как высыхает она буквально за минуту-другую.

Ну и получилось у нас вот такая фиговина

Фу. Выдохнули и перешли к следующему шагу.

На этом этапе нам надо протравить плату - то есть убрать с заготовки всю ненужную фольгу, дабы остались только нарисованные нами дорожки.
Для чего воспользуемся хлорным железом. Продается оно в банках - это такая кашица ржавого цвета и ужасно мерзко воняющая. Разводится оно теплой водой.
Разводим приблизительно из расчета 100 грамм хлорного железа на 100 грамм воды. Воды можно меньше - главное, чтобы раствор целиком покрывал нашу заготовку. Итак, растворяем железо в воде, тщательно размешиваем и бросаем туда будущую плату - теперь уже недолго осталось ей быть заготовкой.

В процессе травления невредно помешивать раствор - либо перемешивая его неметаллической палочкой, либо покачивая ванночку из стороны в сторону. Опять же, можно пустить под дно ванночки теплую воду, чтобы раствор не остывал. Время травления зависит от размера платы и концентрации раствора. Обычно около 20 минут. Если за это время плата не протравилась, значит концентрация хлорного железа недостаточна и стоит подсыпать еще.

Кстати! Знаете ли вы, что использованное хлорное железо можно восстанавливать? Если вас задушила большая, зеленая жаба, использованный раствор можно использовать повторно. Для этого надо его восстановить - то есть выбрать из раствора всю ту медь, которую он сожрал с печатной платы. Посмотрите на фотографию

Половина этого гвоздя побывала в использованном растворе хлорного железа. Таким образом, если всыпать горсть гвоздей - на них будет осаждаться вся медь, присутствующая в растворе. Что характерно - потребительские качества гвоздей от этого совершенно не пострадают.

Однако вернемся к нашим баранам. Вернее, к нашей уже почти готовой плате. Она уже протравилась.
Теперь тщательнейшим образом её промываем, сушим и вот что получилось:

Теперь опять берем вату, макаем в ацетон и стираем весь тонер, который сейчас покрывает дорожки на плате.

Ну вот - почти все готово - остался последний шаг.

Ну теперь осталось только просверлить отверстия под элементы, и облудить дорожки - то есть покрыть их тонким слоем припоя. Сверлим, сами понимаете, сверлом.
Я использовал сверло диаметром 0,9 мм, чего и вам рекомендую, если конечно у вас на плате не будет крупногабаритных деталей. А вообще, конечно, диаметр выводов надо учитывать еще на стадии проектирования печатной платы, дабы потом не кусать локти и не переделывать все подряд.
Что касается лужения, то тут совсем все просто - покрываем плату любым жидким флюсом - самое простое 30% раствор канифоли в спирте. Разогреваем паяльник и взяв на жало минимальное количество припоя, начинаем водить им вдоль дорожек платы. После чего протираем плату спиртом для удаления лишнего флюса.
Должно получится вот так:

Ну вот собственно и все.
Такая вот замечательная плата у нас получилась - на ней не стыдно и собрать что-нить хорошее.
Всем удачи.
Вопросы в Форум.
PS
Хочу попросить прощения у товарищей Голубицкого и Козловского - замечательных авторов вышеупомянутой мной "Компьтерры" за столь нецелевое использование их статей.
Чего не сделаешь ради искусства, сами понимаете.


Как вам эта статья?

Заработало ли это устройство у вас?

www.radiokot.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *