Содержание:
Количество мобильных средств связи, находящихся в активном пользовании, постоянно растет. К каждому из них идет зарядное устройство, поставляемое в комплекте. Однако далеко не все изделия выдерживают сроки, установленные производителями. Основные причины заключаются в низком качестве электрических сетей и самих устройств. Они часто ломаются и не всегда возможно быстро приобрести замену. В таких случаях требуется схема зарядного устройства для телефона, используя которую вполне возможно отремонтировать неисправный прибор или изготовить новый своими руками.
Зарядное устройство считается наиболее слабым звеном, которым укомплектованы мобильные телефоны. Они часто выходят из строя из-за некачественных деталей, нестабильного сетевого напряжения или в результате обычных механических повреждений.
Наиболее простым и оптимальным вариантом считается приобретение нового прибора. Несмотря на различие производителей, общие схемы очень похожи друг на друга. По своей сути, это стандартный блокинг-генератор, выпрямляющий ток с помощью трансформатора. Зарядники могут отличаться конфигурацией разъема, у них могут быть разные схемы входных сетевых выпрямителей, выполненные в мостовом или однополупериодном варианте. Существуют различия в мелочах, не имеющих решающего значения.
Как показывает практика, основными неисправностями ЗУ являются следующие:
Практически все корпуса зарядных устройств являются неразборными. Поэтому во многих случаях ремонт становится нецелесообразным и неэффективным. Гораздо проще воспользоваться готовым источником постоянного тока, подключив его к нужному кабелю и дополнив недостающими элементами.
Основой многих современных зарядных устройств служат наиболее простые импульсные схемы блокинг-генераторов, содержащие всего лишь один высоковольтный транзистор. Они отличаются компактными размерами и способны выдавать требуемую мощность. Эти устройства совершенно безопасны в эксплуатации, поскольку любая неисправность ведет к полному отсутствию напряжения на выходе. Таким образом, исключается попадание в нагрузку высокого нестабилизированного напряжения.
Выпрямление переменного напряжения сети осуществляется диодом VD1. Некоторые схемы включают в себя целый диодный мост из 4-х элементов. Ограничение импульса тока в момент включения производится резистором R1, мощностью 0,25 Вт. В случае перегрузки он просто сгорает, предохраняя всю схему от выхода из строя.
Для сборки преобразователя используется обычная обратноходовая схема на основе транзистора VT1. Более стабильная работа обеспечивается резистором R2, запускающим генерацию в момент подачи питания. Дополнительная поддержка генерации происходит за счет конденсатора С1. Резистор R3 ограничивает базовый ток во время перегрузок и перепадов в сети.
В данном случае входное напряжение выпрямляется за счет использования диодного моста VD1, конденсатора С1 и резистора, мощностью не ниже 0,5 Вт. В противном случае во время зарядки конденсатора при включении устройства, он может сгореть.
Конденсатор С1 должен обладать емкостью в микрофарадах, равной показателю мощности всего зарядника в ваттах. Основная схема преобразователя такая же, как и в предыдущем варианте, с транзистором VT1. Для ограничения тока используется эмиттер с датчиком тока на основе резистора R4, диода VD3 и транзистора VT2.
Данная схема зарядного устройства телефона ненамного сложнее предыдущей, но значительно эффективнее. Преобразователь может стабильно работать без каких-либо ограничений, несмотря на короткие замыкания и нагрузки. Транзистор VT1 защищен от выбросов ЭДС самоиндукции специальной цепочкой, состоящей из элементов VD4, C5, R6.
Необходимо ставить только высокочастотный диод, иначе схема вообще не будет работать. Данная цепочка может устанавливаться в любых аналогичных схемах. За счет нее корпус ключевого транзистора нагревается гораздо меньше, а срок службы всего преобразователя существенно увеличивается.
Выходное напряжение стабилизируется специальным элементом – стабилитроном DA1, установленным на выходе зарядки. Для гальванической развязки задействован оптрон V01.
Обладая некоторыми знаниями электротехники и практическими навыками работы с инструментом, можно попытаться отремонтировать зарядное устройство для сотовых телефонов собственными силами.
В первую очередь нужно вскрыть корпус зарядника. Если он разборный, потребуется соответствующая отвертка. При неразборном варианте придется действовать острыми предметами, разделяя зарядку по линии стыка половинок. Как правило, неразборная конструкция свидетельствует о низком качестве зарядников.
После разборки осуществляется визуальный осмотр платы с целью обнаружения дефектов. Чаще всего неисправные места отмечены следами от сгорания резисторов, а сама плата в этих точках будет более темной. На механические повреждения указывают трещины на корпусе и даже на самой плате, а также отогнутые контакты. Вполне достаточно загнуть их на свое место в сторону платы, чтобы возобновить поступление сетевого напряжения.Нередко шнур на выходе устройства оказывается оборванным. Разрывы возникают чаще всего возле основания или непосредственно у штекера. Дефект выявляется путем прозвонки проводов и замеров сопротивления.
Если видимые повреждения отсутствуют, транзистор выпаивается и прозванивается. Вместо неисправного элемента подойдут детали от сгоревших энергосберегающих ламп. Все остальные делали – резисторы, диоды и конденсаторы – проверяются таким же образом и при необходимости меняются на исправные.
electric-220.ru
Теперь тестирование.
Т.к. устройство изначально не является безопасным, подключение производил через дополнительный сетевой предохранитель. Если уж что случится — хотя-бы не обожжёт и не оставит без света.
Проверял без корпуса, чтобы можно было контролировать температуру элементов.
Выходное нгапряжение без нагрузки 5,25В
Потребляемая мощность без нагркзки менее 0,1Вт
Под нагрузкой 0,3А и менее зарядка работает вполне адекватно, напряжение держит нормально 5,25В, пульсации на выходе незначительные, ключевой транзистор греется в пределах нормы.
Выходит, данная зарядка реально может выдавать максимум 0,45А вместо заявленных 1А.
Далее, зарядка была собрана в корпус (вместе с предохранителем) и оставлена в работе на пару часов.
Как ни странно, зарядка не вышла из строя. Но это вовсе не означает, что она является надёжной — имея такую схемотехнику долго ей не протянуть…
В режиме короткого замыкания зарядка тихо умерла через 20 секунд после включения — произошёл обрыв ключевого транзистора Q1, резистора R2 и оптрона U1. Даже дополнительно установленный предохранитель не успел сгореть.
Для сравнения, покажу как выглядит внутри простейшая китайская зарядка 5В 2А от планшета, изготовленная с соблюдением минимально-допустимых норм безопасности.
Пользуясь случаем, сообщаю, что драйвер светильника из предыдущего обзора был успешно доработан, статья дополнена.
mysku.ru/blog/aliexpress/28085.html
Итоговый вывод: лучшее место этой зарядки — мусорное ведро, берегите себя и близких.
Продолжение следует…
mysku.ru
Недавно мне попались пять аккумуляторов — один от перебойного источника питания компьютера и четыре простых 6-ти вольтовых, полностью разряженных. Попробовал зарядить «ассиметричным» током и аккумуляторы ожили. После этого надо было сделать подходящее зарядное устройство для них. Побродив по просторам интернета, перебрав кучу схем, в итоге остановился на схеме зарядного устройства, собранной на основе МС L200c. Только микросхему пришлось заказывать в другом городе — не везде она есть в продаже.
Блок переключаемых резисторов предназначен для ступенчатой регулировки тока заряда. Естественно если надо получить другие значения тока (под определённый тип аккумуляторов), то номиналы соответственно корректируем. В случае, если данное сетевое зарядное устройство предназначается для конкретной модели АКБ — переключатель можно не ставить вообще. Просто устанавливаем один резистор на заданный ток. Например если планируется заряжать аккумулятор на ёмкость 10 А/ч, то зарядный ток нужен 1 А и резистор соответственно 0,5 Ома.
Детали использовал те, что были в наличии: импортные и российские. Схема к номиналам и типам радиоэлементов не критична.
Индикатор поставил от магнитофона. Показывает он зарядный ток процесса зарядки свинцового аккумулятора.
Режим заряда стандартный — ток примерно 10-15% от ёмкости АКБ, а время заряда 10-15 часов.
Корпус в сетевое зарядное устройство использовал готовый, от старого компьютерного блока питания.
Пришлось все разместить немного компактно, чтоб вписаться в заданные размеры.
В результате получилось отлично и стабильно работающее ЗУ. Заряженные аккумуляторы — два 6 вольтовых, работают уже почти год.
Форум по зарядным устройствам
Схемы зарядных устройствelwo.ru
Простое зарядное устройство для сотового телефона.
В данной статье мы рассмотрим 2 варианта схемы зарядного устройства для сотового телефона.
Внешний вид устройства:
Спецификация:
Описание |
Обозначение |
Мин. |
Норма |
Макс. |
Ед. изм. |
Входные параметры Напряжение Частота Потребление на Х.Х. |
Vin fline
|
85 47
|
50/60
|
265 64 0.5 |
VAC Hz W |
Выходные параметры Выходное напряжение 1 Выходная пульсация 1 Выходной ток 1 Выходная мощность (RMS) |
Vout1 Vripple1 Iout1 Pout |
4.75
534
|
5.0 60 600 3.0 |
5.75
666
|
V mV mA W |
КПД |
n |
59 |
— |
— |
% |
ЭМИ Безопасность |
Соответствуют: CISPR22B/EN55022B, IEC950, UL1950 класс II |
— |
|||
Диапазон рабочих температур |
Tamb |
0 |
— |
50 |
C |
Преимущества этой конструкции:
— Низкая стоимость CV/CC зарядного устройства.
— Потребление на холостом ходу меньше чем 300mW.
— Соответствует требованиям СЕС по КПД и потреблении на холостом ходу.
Схемы
1) Схема зарядного устройства с RCD цепочкой гашения выброса.
2) Схема зарядного устройства с диодом Зенера в цепочке гашения выброса и вспомогательной обмоткой.
Вариант разводки печатной платы.
Перечень элементов:
N |
Кол-во |
Номинал |
Описание |
Обозначение |
1 |
2 |
4.7 uF |
4.7 uF, 400 V, Electrolytic, (8 x 11.5) |
C1 C2 |
2 |
1 |
2.2 nF |
2.2 nF, 1 kV, Disc Ceramic |
C3 |
3 |
1 |
100 nF |
100 nF, 50 V, Ceramic, X7R, 0805 |
C5 |
4 |
1 |
330 uF |
330 uF, 10 V, Electrolytic, Low ESR, 180 mOhm |
C6 |
5 |
1 |
2.2 nF |
2.2 nF, 50 V, Ceramic, X7R, 0805 |
C9 |
6 |
4 |
1N4005 |
600 V, 1 A, Rectifier, DO-41 |
D1 D2 D3 D4 |
7 |
1 |
1N4007G |
1000 V, 1 A, Rectifier, Glass Passivated, 2 us, DO-41 |
D5 |
8 |
1 |
SS14 |
40 V, 1 A, Schottky, DO-214AC |
D7 |
9 |
1 |
1 mH |
1 mH, 0.15 A, Ferrite Core |
L1 |
10 |
1 |
MMST3906 |
PNP, Small Signal BJT, 40 V, 0.2 A, SOT-323 |
Q1 |
11 |
2 |
100 k |
100 k, 5%, 1/4 W, Metal Film, 1206 |
R1 R2 |
12 |
1 |
200 |
200 R, 5%, 1/8 W, Metal Film, 0805 |
R3 |
13 |
1 |
68 |
68 R, 5%, 1/8 W, Metal Film, 0805 |
R4 |
14 |
1 |
1.2 k |
1.0k 5%, 1/8 W, Metal Film, 0805 |
R6 |
15 |
1 |
820 |
820 R, 5%, 1/8 W, Metal Film, 0805 |
R8 |
16 |
1 |
1.7 |
1.7 R, 5%, 1 W, Metal Oxide |
R9 |
17 |
1 |
8.2 |
8.2 R, 2.5 W, Fusible/Flame Proof Wire Wound |
RF1 |
18 |
1 |
4.7 |
4.7 R, 5% Metal film 0805 |
R10 |
19 |
1 |
51 k |
51 k, 5% Metal film 0805 |
R11 |
20 |
1 |
EE16 |
Bobbin, EE16 Horizontal, 10 Pins |
T1 |
21 |
1 |
LNK363P |
PI’s device |
U1 |
22 |
1 |
PC817D |
Opto coupler, 35 V, CTR 300-600%, 4-DIP |
U2 |
23 |
1 |
BZX79-B5V1 |
5.1 V, 500 mW, 2%, DO-35 |
VR1 |
Спецификация на трансформатор:
1) Электрическия схема.
2) Электрическая спецификация:
Электрическая прочность | 60Hz 1 минута, с пинов 1-5 на пины 6-10 | 3000 VAC |
Индуктивность первичной обмотки (пин 3 — пин 5) | Все обмотки разомкнуты | 1940uH +/- 5% (132kHz) |
Резонансная частота (пин 3 — пин 5) |
Все обмотки разомкнуты | 700 kHz (min) |
Индукция рассеяния первичной обмотки | Пины 9-8 закорочены | 110 uH (max) |
3) Схема построения
Рабочие характеристики:
Все измерения проводились при комнатной температуре, при частоте питающей сети 60 Hz. Точка, на которой проводились измерения находилась на конце выходного кабеля длиной 6 футов. Сопротивление кабеля по постоянному току равно 0,2 Ом.
1) Зависимость КПД от величины нагрузки.
Примечание: по требованиям СЕС минимальный КПД должен составлять 58,9%. При этом замеры показали:
а) RCD цепочка гашения выброса. Без подключения дополнительной обмотки трансформатора.
б) Цепочка гашения выброса (диод Зенера), с подключением дополнительной обмотки трансформатора.
2) Зависимость КПД от уровня входного напряжения.
а) RCD цепочка гашения выброса. Без подключения дополнительной обмотки трансформатора.
,
б) Цепочка гашения выброса (диод Зенера), с подключением дополнительной обмотки трансформатора.
3) Потребление источника питания на холостом ходу:
а) RCD цепочка гашения выброса. Без подключения дополнительной обмотки трансформатора.
б) Цепочка гашения выброса (диод Зенера), с подключением дополнительной обмотки трансформатора.
4) Нагрузочная характеристика.
5) Тепловые измерения.
Измерения проводились внутри закрытого короба при полной нагрузке без внешней воздушной конвекции.
Результаты сведены в таблицу:
а) RCD цепочка гашения выброса. Без подключения дополнительной обмотки трансформатора.
— |
85 VAC |
265 VAC |
Температура окр. среды |
50С |
50С |
LNK363P |
108C при Pout=2,82W (5.22V/540mA) |
103C при Pout=2,84W (5.23V/542mA) |
б) Цепочка гашения выброса (диод Зенера), с подключением дополнительной обмотки тран
— |
85 VAC |
265 VAC |
Температура окр. среды |
50С |
50С |
LNK363P |
96C при Pout=2,82W (5.22V/544mA) |
89C при Pout=2,82W (5.22V/544mA) |
Более подробную информацию вы сможете получить, ознакомившись с оригиналом документа.
Автор документа: Департамент по применению компании Power Integrations.
Перевел и скорректировал:
Бандура Геннадий.
Инженер по применению микросхем Power Integrations
компании Макро-Петербург.
Bandura (at) macrogroup.ru
www.qrz.ru
В предыдущем материале мы рассмотрели схему простого автономного зарядного для мобильной техники, работающего по принципу простого стабилизатора с понижением напряжения батарей. На этот раз попробуем собрать чуть более сложное, но более удобное ЗУ. Встроенные в миниатюрные мобильные мультимедийные устройства аккумуляторы обычно имеют небольшую ёмкость, и, как правило, рассчитаны на воспроизведение аудиозаписей в течение не более нескольких десятков часов при выключенном дисплее или на воспроизведение нескольких часов видео или нескольких часов чтения электронных книг. Если сетевая розетка недоступна или из-за непогоды или других причин электроснабжение отключено на длительное время, то различные мобильные аппараты с цветными дисплеями придётся питать от встроенных источников энергии. Схема мобильного зарядного без сети 220В Устройство представляет собой линейный стабилизатор напряжения компенсационного типа с малым напряжением насыщения и очень малым собственным током потребления. В качестве источника энергии для этого стабилизатора может быть простая батарейка, аккумуляторная батарея, солнечная или ручной электрогенератор. Потребляемый стабилизатором ток при отключенной нагрузке около 0,2мА при входном напряжении питания 6 В или 0,22мА при напряжении питания 9 В. Минимальная разница между входным и выходным напряжением менее 0,2 В при токе нагрузке 1 А! При изменении входного напряжения питания от 5,5 до 15 В выходное напряжение изменяется не более чем на 10 мВ при токе нагрузки 250 мА. При изменении тока нагрузки от 0 до 1 А выходное напряжение изменяется не более чем на 100 мВ при входном напряжении б В и не более чем на 20 мВ при входном напряжении питания 9 В.Самовосстанавливающийся предохранитель защищает стабилизатор и батарею питания от перегрузки. Обратновключенный диод VD1 защищает устройство от переполюсовки напряжения питания. При увеличении напряжения питания, выходное напряжение также стремится увеличиться. Чтобы поддерживать выходное напряжение стабильным, используется регулирующий узел, собранный на VT1, VT4. В качестве источника опорного напряжения применён сверхъяркий светодиод синего цвета, который одновременно с выполнением функции микромощного стабилитрона, является индикатором наличия выходного напряжения. Когда выходное напряжение стремится увеличиться, ток через светодиод возрастает, также возрастает ток через эмиттерный переход VT4, и этот транзистор открывается сильнее, также сильнее открывается VT1. который шунтирует затвор-исток мощного полевого транзистора VT3. В результате, сопротивление открытого канала полевого транзистора увеличивается и напряжение на нагрузке понижается. Подстроечным резистором R5 можно регулировать выходное напряжение. Конденсатор С2 предназначен для подавления самовозбуждения стабилизатора при росте тока нагрузки. Конденсаторы С1 и СЗ — блокировочные по цепям питания. Транзистор VT2 включен как микромощный стабилитрон с напряжением стабилизации 8..9 В. Он предназначен для защиты от пробоя высоким напряжением изоляции затвора VT3. Опасное для VT3 напряжение затвор-исток может появиться в момент включения питания или из-за прикосновения к выводам этого транзистора. Детали. Диод КД243А можно заменить любым из серий КД212, КД243. КД243, КД257, 1N4001..1N4007. Вместо транзисторов КТ3102Г подойдут любые аналогичные с малым обратным током коллектора, например, любые из серий КТ3102, КТ6111, SS9014, ВС547, 2SC1845. Вместо транзистора КТ3107Г подойдёт любой из серий КТ3107, КТ6112, SS9015, ВС556, 2SA992. Мощный п-канальный полевой транзистор типа IRLZ44 в корпусе ТО-220, имеет малое пороговое напряжение открывания затвор-исток, максимальное рабочее напряжение 60 В. Максимальный постоянный ток — до 50 А, сопротивление открытого канала 0,028 Ом. В этой конструкции его можно заменить на IRLZ44S, IRFL405, IRLL2705, IRLR120N, IRL530NC, IRL530N. Полевой транзистор устанавливают на теплоотвод с достаточной для конкретного варианта применения площадью охлаждающей поверхности. При монтаже выводы полевого транзистора закорачивают проволочной перемычкой. Схема блока индикации разряда аккумулятора Задача данной схемы — не допустить критического разряда литиевого аккумулятора. Индикатор включает красный светодиод, когда напряжение на аккумуляторе снизится до порогового значения. Напряжение включения светодиода установлено 3,2V.Печатная плата: Для упрощения конструкции, данный индикатор разряда можно и не ставить, ведь микросхему SMD можно не найти. Поэтому платка специально стоит сбоку и её можно по линии отрезать, а позже, при необходимости, отдельно добавить. В будущем хотел поставить туда индикатор на TL431, как более выгодный вариант по деталям. Полевой транзистор стоит с запасом для разных нагрузок и без радиатора, хотя думаю можно поставить и аналоги послабее, но уже с радиатором. Форум по автономным ЗУ Обсудить статью МОБИЛЬНАЯ ЗАРЯДКА ДЛЯ ТЕЛЕФОНА |
radioskot.ru
Впрочем,
замену неисправному зарядному устройству найти весьма легко. Как
показал анализ нескольких зарядных устройств различных
фирм-производителей, они все построены по весьма схожим схемам.
Практически это схема высоковольтного блок-кинг-генератора, напряжение
со вторичной обмотки трансформатора которого выпрямляется и служит для
зарядки аккумулятора сотового телефона. Различие, обычно заключается
только в разъемах, а так же непринципиальные различия в схеме, такие как
выполне-нение входного сетевого выпрямителя по однополупе-риодной или
мостовой схеме, различие в схеме установки рабочей точки на базе
транзистора, наличие или отсутствие индикаторного светодиода, и другие
мелочи.
И
так, какие же «типовые» неисправности? Прежде всего следует обратить
внимание на конденсаторы. Пробой конденсатора, включенного после
сетевого выпрямителя весьма вероятен, и приводит как к повреждению
выпрямителя, так и к перегоранию низкоомного постоянного резистора,
включенного между выпрямителем и отрицательной обкладкой этого
конденсатора. Данный резистор, кстати говоря, работает практически как
предохранитель.
Зачастую выходит из строя и сам транзистор.
Обычно там стоит высоковольтный мощный транзистор, обозначенный «13001»
или «13003». Как показывает практика, при отсутствии такового на замену
можно использовать отечественный КТ940А, широко использовавшийся в
выходных каскадах видеоусилителей старых отечественных телевизоров.
Пробой
конденсатора 22 мкФ приводит к отсутствию запуска генерации. А
повреждение стабилитрона 6,2V приводит к непредсказуемому выходному
напряжению и даже выходу из строя транзистора из-за превышения
напряжения на базе.
Повреждение конденсатора на выходе вторичного выпрямителя бывает реже всего.
Конструкция
корпуса зарядного устройства неразборная. Нужно пилить, ломать: а потом
как-то все это склеивать, заматывать изолентой… Возникает вопрос о
целесообразности ремонта. Ведь чтобы зарядить аккумулятор сотового
телефона достаточно практически любого источника постоянного тока
напряжением 5-6V, с максимальным током не ниже 300mA. Возьмите такой
источник питания, и подключите его к кабелю от неисправного зарядного
устройства через резистор сопротивлением 10-20 Ом. И все. Главное не
перепутать полярность. Если разъем USB или универсальный 4-контактный —
между средними контактами включить сопротивление около 10-100 килоом
(подобрать, чтобы телефон «признал» зарядное устройство).
Снегирев И.
radio-bes.do.am
В одной из своих предыдущих статей я указывал, что для питания портативных микроконтроллерных устройств удобно использовать зарядные устройства от мобилок. ?х продают, особенно битые, по гривне за ведро на блошиных рынках и не только. В этой статье я расскажу об модернизации одного из таких зарядных устройств. Предназначалось оно для телефонов «Siemens», по крайнем мере так гласила надпись на его корпусе и зарядная розетка была «сименсовской» конфигурации. Ну, да это не важно — можно было бы с таким же успехом наклеить «Motorolla» или «Nokia», прилепить соответствующий разъём и вперёд. Отдал мне её знакомый, причём заявил, что зарядка рабочая, просто он телефон обновил, а зарядка осталась неудел. Ну да речь не об том, и вам уже порядком поди надоела прелюдия. Прошу меня великодушно простить, милый читатель, хочется, чтобы вы представили начальные условия…
Так вот, решил я использовать описываемую вещь в качестве источника питания для бытового квартирного измерителя потребляемой мощности/входного напряжения, устанавливаемого на DIN-рейку. Т.е. понятно, что геометрические размеры сей железяки весьма скромные, а плата зарядки имеет 4,5 см х 2 см, что очень подходит для задуманной конструкции. Перво-наперво измерил мультиметром, что же эта зарядка выдаёт. Выдала она на ХХ около 7 в, но напруга как-то нереально «гуляла». Не вопрос, подключаю осциллограф и наблюдаю очень страшное кино. Смотрим вместе.
Это какие-то всплески генерации:
А это «всплеск» растянутый во времени.
Засинронизировать его не вышло — постоянный срыв 🙁
Ужо-о-о-с!!! А ведь (я неспроста упомянул в начале статьи) бывший хозяин заряжал этой «зарядкой» аккумулятор своего Сименса. Бедный аккумулятор… Для правильного определения дальнейшей судьбы препарируемого устройства я совершил подвиг — восстановил принципиальную схему по плате. Сие действо я ОЧЕНЬ не люблю, хотя приходится упражняться часто… В итоге моему взору предстала распространённая схема построения зарядного устройства на основе блокинг-генератора, НО !!! с двумя недостатками.
Первый — отсутствие фильтрующего конденсатора в однополупериодном сетевом выпрямителе, т.е. зарядка питается полуволнами . Второй — нет демпфера в коллекторной цепи ключевого транзистора 13001-серии, что очень плохо. Стало понятно страшное кино: в моменты положительного полупериода сети, когда напряжение половинки синусоиды достигает значения достаточное для запуска блокинг-процесса, оный и пытается установится. Но обратные выбросы первички W1 импульсного трансформатора давят этот процесс, в итоге имеем вышеуказанную осциллограмму маслом.
С помощью паяльника и матюков я запихал недостающие элементы (обозначены вверху схемы, точки подключения обозначены римскими цифрами, R4 — убрать) на плату зарядного устройства.
Первое же включение в сеть ознаменовалось стабильным запуском и устойчивой генерацией импульсов.
Далее решил исследовать нагрузочные характеристики моего подопытного. В качестве нагрузки повесил попавшуюся под руку лампочку и 20-ти омный проволочный переменник включенный реостатом.
Сразу скажу, что надпись на лейбле 3,7 В 650 мА, говорит о хорошем чувстве юмора у производителя этой балалайки. Больше 300 мА нагружать не стОит. Напруга при этом падает до 6,2 В. Хотя предполагаю, что из последних сил зарядка вытащит полампера, но напряжение упадёт до двух-трёх вольт и это будут её последние вольты. Пять минут под нагрузкой 350 мА нагрели бедный трансформатор до температуры больше 65 градусов , т.к. палец удержать на нём было невозможно, и температура продолжала расти, что чётко фиксировалось обонянием. Напряжение упало до 5 В, и это при том, что 1N4007 выпрямителя вторичной цепи я заменил на Шоттки SR108. Штатный электролит 100 мкФ также явно слабоват, о чём свидетельствуют дикие пульсации.
Это при 200 мА:
300 мА:
Это при «закрытом» входе осциллографа, чтобы лучше рассмотреть:
Пришлось заменить на 2200 мкФ — дело улучшилось значительно.
300 мА:
«Закрытый» вход:
Как видите, пульсации уменьшились.
Общий вывод таков: использовать описанное зарядное устройство для питания микроконтроллерных конструкций можно после всех вышеописанных доработок. Ещё желательно поставить дросселя по первичке и вторичке — это должно ослабить игольчатые выбросы. ? лучше вместо однополупериодного выпрямителя, как на входе так и на выходе, поставить «мостик».
www.embed.com.ua