8-900-374-94-44
[email protected]
Slide Image
Меню

Фотоплоттер для плат печатных плат – Лазерные барабанные фотоплоттеры | Петрокоммерц : Все для производства печатных плат

Содержание

Лазерные барабанные фотоплоттеры | Петрокоммерц : Все для производства печатных плат

Назначение установки:
Лазерный фотоплоттер DX2026 предназначен для формирования изображения на фотопленке различных производителей. Изготовленные на данном оборудовании фотошаблоны позволяют тиражировать изображение на поверхности печатных плат до 7 класса точности.


Отличительные особенности:
Лазерный фотоплоттер барабанного типа формирует изображение на фотопленке оптической лазерной головкой c 16 лучами. Головка пошагово перемещается вдоль оси барабана, вращающегося с постоянной скоростью. Фотопленка крепится на внешней поверхности барабана вакуумным прижимом. Для функционирования системы крепления фотопленки на барабан в состав фотоплоттера входит вакуумный насос.
Толщина используемой фотопленки – 0,10 и 0,18 мм. Управление фотоплоттером осуществляется специальной программой, работающей в среде MS Windows, и имеющей удобный интерфейс пользователя. Фотоплоттер может комплектоваться проявочной машиной (устанавливается отдельно, не стыкуясь с фотоплоттером).

Технические характеристики:

Форматы пленки

660× 508 мм

Разрешение

4000, 12000 dpi

Время печати шаблона 660× 508

 4 – 12 мин

Минимальная ширина линия/зазор

25/25 мкм

Пятно засветки

6,35 (в режиме 4000 dpi) мкм

2,12 (в режиме 12000 dpi) мкм

Точность повторения

±10 мкм

Условия загрузки/выгруз­ки фотопленки

Темно-зеленое неактиничное освещение

Тип фотоплёнки

Agfa Idealine RPF, Kodak APR7, RED7;
Fuji NEW HPR-7S и др.

Загрузка пленки

автоматическая с вакуумным прижимом

Выгрузка фотопленки

вручную снимается с барабана

Формат входных данных

Gerber (RS-274D, RS-274X)

Вес фотоплоттера

395 кг

Габариты фотоплоттера, мм

1110 × 840 × 1200

(без насоса и компьютера)

 

www.petrocom.ru

Современные растровые планшетные фотоплоттеры в производстве печатных плат. Организация участка изготовления фотошаблонов

Технологии в электронной промышленности №4’2006

Заказать этот номер

Для изготовления фотошаблонов (ФШ) печатных плат используются не только барабанные лазерные фотоплоттеры, но и планшетные фотоплоттеры, которые получают сегодня все большее распространение. Пленка в таких плоттерах размещается горизонтально, не претерпевая каких-либо деформаций и механических нагрузок. А при необходимости работать и на фотопленке, и на стеклянных фотопластинах планшетные фотоплоттеры становятся оптимальным выбором.

Теперь фотоплоттеры имеют встроенный термодатчик, позволяющий при необходимости автоматически компенсировать уменьшение размеров фотопленки и при изготовлении фотошаблонов свести к минимуму влияние температуры в помещении.

Новые разработки планшетных фотоплоттеров

Благодаря использованию модулятора света, оснащенного новой LCD-матрицей с 1400×1050 пикселей, планшетные фотоплоттеры позволяют создать разрешение до 24 000 dpi, даже в стандартной комплектации MIVA 1624E.

В качестве примера приведем технические характеристики планшетных фотоплоттеров MIVA 1612E и MIVA 2808 (таблицы 1,2).

В отличие от установок других типов планшетные фотоплоттеры в дополнение к пленкам позволяют экспонировать и стеклянные фотопластины, и пластинки с фоторезистом с максимальным разрешением 128 000 dpi (0,2 мкм). В таком универсальном плоттере используется не LCD-матрица, а устройство DMD (Digital Micromirror Device) с размером пикселя/минизеркала 13х 13 мкм и скоростью переключения 7000 раз в секунду, а применение гранитной основы обеспечивает самую высокую точность и степень повторяемости фотошаблонов.

Для того чтобы полностью автоматизировать изготовление фотошаблонов, к планшетным фотоплоттерам (при автоматическом загрузчике фотопленки FilmFeeder) может быть подключена проявочная машина, например ЕС 750 РСВ (Echo Graphic, Дания), рекомендуемая фирмой Kodak для фотошаблонов ПП.

Таблица 1. Технические характеристики фотоплоттера MIVA 1612E

Таблица 2. Технические характеристики фотоплоттера MIVA 2808 Sprinter

К безусловным достоинствам планшетных фотоплоттеров относятся высокие технические параметры, простота обслуживания, низкая стоимость эксплуатации и высокая надежность.

Начиная с 1997 года во всех моделях фотоплоттеров в качестве источника света используется ксеноновая лампа-вспышка, которая в отличие от лазеров характеризуется большой продолжительностью эксплуатации, низким энергопотреблением и простотой юстировки.

Прецизионность

Каждый фотоплоттер проходит индивидуальную автоматическую калибровку по специальному эталону с интервалом 10 мм, и все данные хранятся в чипе самого плоттера (плюс копия на диске управляющего компьютера).

Датчики линейного перемещения с разрешением 1 мкм выдают информацию о точном местоположении фотоголовки по осям X и Υ. Благодаря этому точность изготовления фотошаблонов для всех типов фотоплоттеров составляет 10 мкм.

Фотопленка

Для изготовления ФШ ПП обычно используется ортохроматическая пленка высокого контраста, которую можно проявлять в помещении с красным светом (фильтр lA_Red): Kodak AGX7, АВХ7. Также возможно использование фотопленок, чувствительных к красному свету (тип Kodak RED7 и ARD7), но при этом требуется увеличение экспозиции на 30-40%.

Фотоплоттер имеет простой интерфейс управления, что позволяет оператору быстро изменять основные параметры прорисовки фотошаблонов, в том числе и экспозицию.

При особых требованиях к стабильности работы фотоплоттера и точности изготовления фотошаблона можно использовать стекло с фотоэмульсией.

В моделях MIVA16xx, 25хх фотопленку или фотопластину размещают на стеклянном столе эмульсией вниз, поскольку фотоголовка расположена снизу. На толщину пленки или стекла можно не обращать внимания, если она не превышает 6 мм.

В более габаритных моделях серии 28хх фотоголовка расположена сверху, и фотоматериал размещается на столе и фиксируется с помощью встроенного компрессора.

Ксеноновая лампа-вспышка

Основная особенность планшетных фотоплоттеров — использование в качестве источника света ксеноновой лампы-вспышки, в отличие от лазеров характеризующейся большим сроком эксплуатации, низким энергопотреблением, простотой юстировки. Огромным преимуществом является также то, что белый свет ксеноновой лампы-вспышки позволяет экспонировать пленки, чувствительные как к зеленому, так и к красному спектру излучения.

Рис. 1. Диаграмма работы ксеноновой лампы

ксеноновая лампа имеет срок эксплуатации более десяти лет (или 10

11 вспышек) и работает в диапазоне 400-650 нм (синий, зеленый и красный спектр) (рис. 1). Она излучает очень короткие (менее 3 мкс) импульсы света, а жидко-кристаллическая матрица (LCD) модулирует свет согласно данным рисунка фотошаблона, которые кадр за кадром проецируются на фотопленку.

Метод графопостроения

В фотоплоттерах используется стандартный компьютер (Pentium-4, ОЗУ 1 Гбайт) и специальное программное обеспечение, с помощью которого удается одновременно осуществлять процессы формирования растрового изображения и прорисовки ФШ. Обработка информации (растрирования) уже не является трудоемкой, и сразу же после завершения передачи данных в компьютер фотоплоттера можно начинать прорисовку ФШ. Передача данных к плоттеру может выполняться по локальной сети, с CD-ROM или дискеты.

Организация участка изготовления фотошаблонов

Какой бы современный фотоплоттер ни использовался, чистота при производстве шаблонов также очень важна. Тривиальный пример — обрыв дорожки из-за волоска, лежащего на пленке.

Стремление к миниатюризации электронного блока выражается в уменьшении ширины дорожек и зазоров между ними. Одно из основных требований, предъявляемых к помещению, где изготавливаются фотошаблоны, заключается в очистке воздуха от пылинок, размер которых превышает 10% от минимального размера элемента. Это означает, что максимально допустимый размер частицы в воздухе может составлять 10 мкм при размере дорожек и расстояний между ними 100 мкм.

Идеальное решение проблемы чистоты и стабильности шаблонов:

  • хорошо кондиционированные чистые помещения класса 10 000 для хранения материалов, нанесения рисунка и проявки шаблонов;
  • костюмы для чистых помещений и воздушные шлюзы для персонала;
  • полная автоматизация процесса изготовления шаблонов.

Такое решение, хотя и дорогостоящее, является наилучшим способом изготовления шаблонов высокой плотности (МПП 4-5-го класса точности).

Но совсем не обязательно делать полную перепланировку участка ФШ. Для получения приемлемых результатов по климатическим условиям и чистоте на участке изготовления ФШ можно ограничиться более простыми решениями.

Для того чтобы дооснастить помещение, где производятся ФШ, необходимо установить следующее оборудование:

1. Сплит-систему;

2. Автоматический увлажнитель воздуха;

3. Устройство обеспыливания воздуха;

4. Стеллаж для хранения ФШ.

Рассмотрим каждую позицию подробнее.

1. Сплит-система поддерживает температурный режим в помещении в пределах 20-22 °С Современные бытовые сплит-системы обеспечивают равномерное распределение воздуха в помещении и работают практически бесшумно. Они не занимают много места, компактны и удобны в эксплуатации.

2. Увлажнитель воздуха

Увлажнитель воздуха (рис. 2) должен имеет воздушный фильтр, препятствующий попаданию пыли внутрь прибора и распылению ее вместе с водяным паром. Устройство легко чистится и не требует регулярной замены.

Прибор должен поддерживать требуемый уровень влажности (для ФШ ПП обычно в пределах 55 ±5%) автоматически.

Поставленной задаче отвечает ультразвуковой увлажнитель воздуха Liiot LH-6511FN фирмы Cuckoo Electronics (Корея), хотя существуют и другие, не менее эффективные установки увлажнения воздуха.

Рис. 2. Увлажнитель воздуха

Характеристики Liiot LH-6511FN:

  • воздушный фильтр, встроенный гигрометр;
  • автоувлажнение до требуемого уровня;
  • площадь помещения, м2 — до 40;
  • объем бака, л — 6;
  • размеры, мм — 335x190x320.

3. Установка очистки воздуха от пыли

При отсутствии возможности спроектировать и построить стационарные чистые комнаты, предназначенные для производства фотошаблонов, можно использовать и другие варианты. В частности, решить проблему локальной очистки воздуха с помощью так называемого «чистильщика воздуха» — AirScrub. Он предназначен для очистки воздуха от пылевидных загрязнений, обеспечивает чистую рабочую среду и постоянно ее поддерживает. Установку желательно разместить в углу помещения (или в противоположных углах при использовании двух систем AirScrub) на расстоянии 0,5-1 м от стен. Такое расположение оптимально для обеспечения необходимого забора воздуха и уменьшения уровня шума в помещении.

Система AirScrub может комплектоваться тремя типами фильтров:

1. Participate фильтр для частиц до 1 мкм;

2. Фильтр НЕРА до 0,3 мкм;

3. Carbon — угольный картридж (патрон) для удаления запаха.

Кроме участка изготовления фотошаблонов применение AirScrub возможно и на участках оптического контроля, защитных паяльных масок, совмещения и сборки пакета МПП (для прессования) (рис. 3).

Рис. 3. AS-1000, AS-500, AS-300

Технические данные (модель AS-500):

  • электропитание          -220 В, 50 Гц, 1,3 А;
  • воздушный поток 6-14 м3/мин;
  • уровень шума             < 45 дБ;
  • рабочий вес                12 кг;
  • диаметр/высота          305/662 мм

Технические данные (модель AS-1000; см. на фото в центре):

  • электропитание          -220 В, 50 Гц, 1,5 А;
  • воздушный поток 14-28 м3/мин;
  • уровень шума             55-65 дБ;
  • габариты:                   диаметр — 610 мм,
  • высота— 1016 мм;
  • рабочий вес                13,6 кг.

Количество и тип установок выбирается в зависимости от площади и объема помещения, а также степени чистоты помещения.

Например, при площади участка -30 м2 (около 90 м3) достаточно одного AS-500.

4. Стеллаж для хранения ФШ

Для постоянного хранения ФШ на участке изготовления ФШ или на участке экспонирования необходимо разместить стационарный стеллаж (рис. 4) для хранения фотошаблонов (до 600 шт.) — 2000-2500 (высота) х 2060×650 мм.

Стандартный пакет ZIP-BAG — это прозрачный пакет из полиэтилена толщиной 0,2 мм с плоской молнией (по всей ширине) в верхней части. Они комплектуются наклейками. Пакеты удобны для хранения фотошаблонов, трафаретов и т. п.

Рис. 4. Стеллаж для хранения ФШ

Если участки изготовления фотошаблонов и экспонирования не могут находиться в смежных помещениях с одинаковыми климатическими условиями, то возможна организация архива фотошаблонов на участке экспонирования и доставка фотошаблонов с участка их изготовления в пыленепроницаемой, термостатированной таре с помощью передвижного стеллажа T-KADDY (рис. 4).

Таблица 3. Эффективность работы AirScrub

Таблица 4. Основные характеристики ZIP BAG

Правильная организация и оснащение участка фотошаблонов не менее важны при изготовлении высокоточных ФШ (и соответственно печатных плат), чем выбор самого фотоплоттера. Ведь при плохой организации труда и без соблюдения условий по поддержанию чистоты и определенных климатических условий даже самое точное оборудование не может быть использовано в полной мере.

Скачать статью в формате pdf

www.tech-e.ru

Высокопроизводительный лазерный фотоплоттер для фотошаблонов печатных плат

Высокопроизводительный лазерный фотоплоттер для фотошаблонов печатных плат
Научная библиотека 06.04.2017 , by Press

С.Баев, В.Бессмельцев, В.Слуев // Журнал Электроника НТБ. Выпуск #3/2002, с: 60-63

Технологическое оборудование для изготовления большеформатных прецизионных фотооригиналов печатных плат – непременный атрибут производства изделий электронной техники. До недавнего времени отечественным производителям печатных плат приходилось выбирать между чрезвычайно дорогими высокоточными зарубежными устройствами и относительно дешевыми, но обладающими низкой точностью прорисовки, фотонаборными автоматами. Ситуация для отечественного производителя изменилась к лучшему с появлением лазерных фотоплоттеров серии «Ромб-Vis-ФШ «.
СОВРЕМЕННОЕ ОБОРУДОВАНИЕ ДЛЯ ВЫВОДА ФОТОФОРМ
Сегодня на рынке оборудования для вывода прецизионных фотоформ наиболее распространены универсальные лазерные графические устройства с растровым способом формирования изображений. Производители выпускают широкий спектр подобных изделий как для печатных плат, так и для вывода полиграфических фотоформ. Однако из-за высокой стоимости предприятиям России и СНГ доступны, как правило, модели низшей ценовой категории, предназначенные для применения в полиграфии. Недостаточная точность механических узлов сканирования лазерного луча и деформация пленки в результате протяжки рулонных фотоматериалов в устройствах данного типа приводят к геометрическим погрешностям записываемых изображений, достигающим 100–200 мкм на размере выводимого кадра [1]. Это ограничивает их применение изготовлением фотошаблонов для плат 2–3 класса точности, поскольку для современных изделий с характерными размерами топологии порядка 100 мкм допустимая погрешность геометрических размеров фотошаблонов – не выше 15–20 мкм. Минимальную погрешность позиционирования записывающего лазерного луча обеспечивает наиболее точный на сегодня механизм сканирования с внешним барабаном. В устройствах с таким способом развертки изображение переносится на листовые фотоматериалы с высокостабильной ПЭТФ-основой увеличенной толщины (0,18 мм), минимизирующей погрешности, связанные с механической и термической деформацией. Прецизионные лазерные фотоплоттеры данного типа выпускают фирмы ECRM, Gerber Scientific (США) и Dynippon Screen (Япония). Их стоимость превышает 100 тыс. долларов.
В России работы по применению лазерных технологий для изготовления фотошаблонов печатных плат начались во второй половине 70-х годов практически одновременно в НИИ «Полюс» (Москва) и Институте автоматики и электрометрии (ИАиЭ) СО РАН (Новосибирск). Основное внимание уделялось исследованию прямых лазерных способов получения фотооригиналов, а также прямых способов изготовления металлических проводящих слоев печатных плат на бессеребряных, непроявляемых материалах. Формирование изображения осуществлялось методами, основанными на эффектах теплового воздействия лазерного излучения СО2- и YAG-лазеров [2, 3].
Однако несомненные преимущества прямых, не требующих проявления и закрепления, методов изготовления фотошаблонов сопровождаются рядом существенных недостатков. Важнейший из них заключается в том, что из-за низкой чувствительности материалов к лазерной тепловой записи существенно возрастает время вывода большеформатных форм – около часа для формата 500х600 мм2 при разрешении 2000 точек/дюйм и мощности лазера более 10 Вт. Хотя размер записывающего пятна в устройствах на основе YAG:Nd-лазера менее 20 мкм, эти лазеры дороги (15–20 тыс. долл.), требуют много электроэнергии для питания и воды для охлаждения, что значительно увеличивает стоимость плоттера и его эксплуатационные расходы.
В зарубежных разработках последних лет использованы методы тепловой записи на основе миниатюрных высокоэффективных полупроводниковых лазеров с мощностью свыше 1 Вт. Такие источники позволили повысить производительность путем распараллеливания процесса записи – одновременно работают до 64 оптических головок или применяются лазерные головки с многоканальными оптическими затворами. Но стоят подобные устройства также значительно дороже 100 тыс. долл. Кроме того, отечественные расходные материалы для тепловой записи серийно не выпускаются, а опытные образцы стоят дороже импортных серебросодержащих фотопленок. На мировом рынке пленочные материалы для лазерной тепловой записи также распространены мало, дороги и массово в Россию не поставляются.
С другой стороны, основная и наиболее распространенная во всем мире технология изготовления фотошаблонов – фотозапись. Лазерные источники излучения в современных фотопостроителях позволяют использовать фототехнические материалы со светочувствительностью 1–10 единиц ГОСТ, малым содержанием серебра и разрешающей способностью более 1000 лин/мм. При этом для записи кадра площадью 1 м2 за 1 минуту достаточно лазерного источника с 10–20 мкм записывающим пятном мощностью не более 1 мВт. Лазеры видимого и ближнего ИК-диапазона такой мощности стоят порядка 300 долларов, что существенно удешевляет фотопостроители.
Для лазерной фотозаписи разработана широкая гамма пленок с максимальной оптической плотностью более 5 D при оптической плотности вуали не более 0,04 (последняя определяется коэффициентом пропускания ПЭТФ-основы). Высокий коэффициент контрастности – более 10 – обеспечивает хорошую резкость края (менее 2 мкм) и уменьшает ошибки записи из-за нестабильности мощности лазерного излучения и режима обработки. Обработка фототехнических материалов сократилась до 1 минуты, а проявочные автоматы сделали процедуру обработки пленки простой и надежной. Благодаря селективной спектральной чувствительности современные фототехнические пленки, чувствительные к красному участку спектра, можно экспонировать и обрабатывать при сине-зеленом освещении, а чувствительные к сине-зеленому свету – при красном.

Источник излучения базовой модели – He-Ne-лазер малой мощности (2 мВт). Отечественные излучатели такого типа по своим параметрам не уступают западным, сравнительно дешевы и экономичны в эксплуатации. Их ресурс превышает 10000 часов. Ключевой элемент оптической схемы лазерного фотоплоттера – акустооптический модулятор-дефлектор (АОМД) на основе кристалла парателлурита (TeO2). Многочастотное управление АОМД позволяет сформировать на его выходе многолучевой растр независимо управляемых лазерных пучков. Оптической схемой многолучевой растр направляется в объектив и фокусируется на поверхность фотоматериала на барабане. За один оборот барабана записывается столько строк изображения, сколько пучков в растре. Так, 16 лучей на выходе модулятора за один оборот цилиндра экспонируют полосу шириной 160 мкм (при разрешении 2540 точек на дюйм). Технические же характеристики АОМД позволяют получить на его выходе до 32 пучков. Малая скорость вращения цилиндра – до 600 об/мин – снижает уровень механических вибраций. Однако распараллеливание записи делает скорость экспонирования высокой. Так, вывод кадра максимального формата (500х600 мм2) в старт-стопном режиме перемещения головки записи (запись ведется только при неподвижной головке) при разрешении 2540 т/дюйм составляет 12 минут. В режиме спиральной развертки максимальный формат выводится за 6 минут.
Оптический блок записи выполнен в виде отдельного модуля, поэтому заказчик может выбрать устройство с наиболее подходящим для используемых фотоматериалов источником лазерного излучения: He-Ne- или полупроводниковый лазер для красной области спектра; твердотельный лазер с полупроводниковой накачкой и удвоением частоты для зеленой; аргоновый или полупроводниковый лазеры для сине-фиолетовой.
Фотоплоттер работает с разрешающей способностью 1270, 2540 и 5080 т/дюйм. Размер пятна лазерного луча – 30 мкм для 1270 т/дюйм и 15 мкм для 2540 и 5080 т/дюйм. Оптическая система программно настраивается на пленки различной толщины с помощью записи тестового изображения.
Время обработки экспонированной пленки даже в ручном режиме, без проявочного автомата, не превышает 2 мин, соответственно полный цикл запись-обработка – не более 15 минут.
Для изготовления фотошаблонов 2–3 класса точности пригодна рулонная фотопленка толщиной 0,1 мм, используемая для вывода полиграфических фотооригиналов. Для удобства работы с ней лазерный фотоплоттер, по желанию заказчика, может быть оснащен кассетой с механизмом форматной отрезки. В стандартном исполнении у фотоплоттера нет полной светозащиты барабана записи, поэтому рабочее помещение должно быть изолировано от внешнего света и оборудовано источниками рассеянного неактиничного освещения.
Электроника управления лазерным фотоплоттером выполнена в виде распределенной системы с автономными блоками управления исполнительными механизмами и сбора данных с датчиков на основе микроконтроллеров (рис.2). Электронный блок подготовки данных – процессор растрирования изображений (RIP) – реализован на платформе IBM-совместимого компьютера с ОЗУ не менее 64 Мбайт. Управляющий компьютер сопрягается с фотоплоттером через специальную плату адаптера, установленную на системной шине. Адаптер принимает подготовленные в виде битовой карты данные пакетами по 32 строки и передает их через скоростной последовательный интерфейс (16 Мбит/с) в модуль буферной памяти контроллера плоттера. Этот модуль распаковывает данные и параллельными 16-битными словами, соответствующими элементам 16 строк изображения, передает их на модуль управления АОМД. Основное управляющее устройство фотоплоттера – микроконтроллер с ядром процессора Intel-51. Он задает параметры модулей, управляет передачей данных на драйверы приводов (шагового двигателя шарико-винтовой передачи, привода автофокусировки, привода шторки), а также управляет контроллером асинхронного двигателя привода вращения цилиндра.

Полное содержание статьи: http://www.electronics.ru/files/article_pdf/1/article_1335_454.pdf

Поделиться ссылкой:

  • Нажмите, чтобы поделиться на Twitter (Открывается в новом окне)
  • Нажмите здесь, чтобы поделиться контентом на Facebook. (Открывается в новом окне)
  • Нажмите, чтобы поделиться в Google+ (Открывается в новом окне)
  • Нажмите, чтобы поделиться на LinkedIn (Открывается в новом окне)
  • Нажмите, чтобы поделиться в Telegram (Открывается в новом окне)
  • Нажмите, чтобы поделиться записями на Pocket (Открывается в новом окне)
  • Нажмите, чтобы поделиться в Skype (Открывается в новом окне)
  • Нажмите, чтобы поделиться записями на Tumblr (Открывается в новом окне)
  • Нажмите, чтобы поделиться в WhatsApp (Открывается в новом окне)
  • Нажмите, чтобы поделиться записями на Pinterest (Открывается в новом окне)
  • Нажмите, чтобы поделиться на Reddit (Открывается в новом окне)

Похожие записи

« Предыдущая статья Холдинг РКС приступил к созданию первых в России микрофотонных приборов для космоса

Следующая статья » Расчет параметров ванны расплава на поверхности титана при лазерной обработке

xn--80akfo2a.xn--p1ai

Планшетные фотоплоттеры с ксеноновой лампой-вспышкой

Для изготовления фотошаблонов (ФШ) печатных плат широко используются и получают всё большее распространение планшетные фотоплоттеры. Пленка в таких плоттерах размещается горизонтально, не претерпевая каких либо деформаций и механических нагрузок. При необходимости работы и на фотопленке, и на стеклянных фотопластинах Ваш выбор – это, конечно же, только планшетные фотоплоттеры.

Компания «MIVA Technologies GmbH» (до 2005 г. – “MIVATEC”) более 25 лет выпускает высокоточные планшетные растровые фотоплоттеры, предназначенные в основном для изготовления фотошаблонов печатных плат. Продукция компании MIVA характеризуется высокими техническими параметрами, простотой обслуживания, низкой стоимостью эксплуатации и высокой надежностью. Стоит отметить, что на источник света — ксеноновую лампу, установленную в фотоплоттеры MIVA, дается гарантия – 5 лет!

Прецизионность

Каждый фотоплоттер проходит индивидуальную автоматическую калибровку по специальному эталону с интервалом 10 мм и все данные хранятся в чипе самого плоттера (плюс копия на диске управляющего компьютера).

Датчики линейного перемещения с разрешением ±1 мкм выдают информацию о точном местоположении фотоголовки по оси Х и Y. Благодаря этому точность изготовления фотошаблонов для всех типов фотоплоттеров MIVA составляет  ± 10 мкм.

Фотоплоттеры “MIVA” имеют встроенный термодатчик, позволяющий при необходимости автоматически компенсировать уход размеров фотопленки и тем самым свести к минимуму влияние температуры в помещении при изготовлении фотошаблонов.

Фотопленка

Обычно для фотоплоттеров MIVA используется ортохроматическая пленка высокого контраста, которую можно проявлять в помещении с красным светом (фильтр 1A_Red): KODAK ABG7. Также возможно использование фотопленок, чувствительных к красному свету (тип Kodak RED7 и APR7) – требуется увеличение экспозиции на 30-40 %.

Фотоплоттер имеет простой интерфейс управления, что позволяет оператору быстро изменять основные параметры прорисовки фотошаблонов (в том числе и экспозицию).

При особых требованиях к стабильности работы фотоплоттера и точности изготовления фотошаблона можно использовать стекло с фотоэмульсией. В моделях MIVA16xx, 25xx фотопленку или фотопластину размещают на стеклянном столе эмульсией вниз – фотоголовка расположена снизу. На толщину пленки или стекла можно не обращать внимания, пока она не превышает 6 мм.

В более габаритных моделях MIVA26xx и MIVA28xx фотоголовка расположена сверху и фотоматериал фиксируется на вакуумном столе.

 

Ксеноновая лампа-вспышка

 

Во всех моделях фотоплоттеров MIVA (начиная с 1997 года) в качестве источника света используется ксеноновая лампа-вспышка, которая в отличие от лазеров, характеризуется большим сроком  эксплуатации, низким энергопотреблением, простотой юстировки. Огромным преимуществом является также то, что белый свет ксеноновой лампы-вспышки позволяет экспонировать пленки, чувствительные как к зеленому, так и к красному спектру излучения.

Ксеноновая лампа имеет срок эксплуатации более десяти лет (или 1011 вспышек) и работает в диапазоне 400-650 нм (синий-зелёный-красный спектр). Она излучает очень короткие (менее 3 микросекунд) импульсы света, а жидко-кристаллическая матрица (LCD) модулирует свет согласно данным рисунка фотошаблона, которые кадр за кадром проецируются на фотопленку.  

Гарантия на ксеноновую лампу – 5 лет!  Срок службы лампы более 10 лет.

 

Метод графопостроения

В фотоплоттерах MIVA используется специальное программное обеспечение. С его помощью удается одновременно осуществлять процесс формирования растрового изображения и сам процесс прорисовки ФШ. Процесс обработки информации (растрирования) уже не столь трудоемок и сразу же после завершения передачи данных в компьютер фотоплоттера можно начинать прорисовку ФШ. Передача данных может осуществляться по локальной сети, с DVD/CD-ROMa или дискеты.

Для стандартных моделей фотоплоттеров серии 26хx_ ReSolution (выпускаются с 2010 года) используется матрица на жидких кристаллах с разрешением 1400 на 1050 пикселей, что в более чем 1,8 раза больше по сравнению с матрицей предыдущего поколения (1024 на 768 пикселей). Ее применение позволило повысить как разрешающую способность, так и скорость экспонирования. Этот модулятор является единой основой для производства мониторов практически всех классов фотоплоттеров MIVA, кроме Хром/ DI. Изображение передается с цифрового выхода видеокарты контроллера, что обеспечивает отсутствие аналоговых помех.

В качестве основы для плоттеров 26хх серии и выше используется гранитная основа. В сочетании с датчиками линейного перемещения с разрешением  0,1 микрометра, это обеспечивает высокую точность и степень повторяемости.

Устройство автоматической подачи фотопленки

В качестве опции поставляется устройство автоматической подачи фотоплёнки, которое позволяет организовать круглосуточную работу фотоплоттера при установке его в линию с устройством проявления фотоплёнки. Время цикла выгрузки-загрузки – 1 минута.

Ёмкость: 50 х 3 лотка = всего 150 листов.

 

www.petrocom.ru

Делаем настольное устройство для изготовления печатных плат в один клик / Habr

В очередной раз отмывая раковину от рыжих пятен хлорного железа, после травления платы, я подумал, что пришло время автоматизировать этот процесс. Так я начал делать устройство для изготовления плат, которое уже сейчас можно использовать для создания простейшей электроники.

Ниже я расскажу о том, как делал этот девайс.

Базовый процесс изготовления печатной платы субтрактивным методом заключается в том, что на фольгированном материале удаляются ненужные участки фольги.

Сегодня большинство электронщиков используют технологии типа лазерно-утюжной для домашнего производства плат. Этот метод предполагает удаление ненужных участков фольги с использованием химического раствора, который разъедает фольгу в ненужных местах. Первые эксперименты с ЛУТом несколько лет назад показали мне, что в этой технологии полно мелочей, порой напрочь мешающих достижению приемлемого результата. Тут и подготовка поверхности платы, и выбор бумаги или иного материала для печати, и температура в совокупности со временем нагрева, а также особенности смывки остатков глянцевого слоя. Также приходится работать с химией, а это не всегда удобно и полезно в домашних условиях.

Мне хотелось поставить на стол некоторое устройство, в которое как в принтер можно отправить исходник платы, нажать кнопку и через какое-то время получить готовую плату.

Немного погуглив можно узнать, что люди, начиная с 70х годов прошлого века, начали разрабатывать настольные устройства для изготовления печатных плат. Первым делом появились фрезерные станки для печатных плат, которые вырезали дорожки на фольгированном текстолите специальной фрезой. Суть технологии заключается в том, что на высоких оборотах фреза, закрепленная на жёстком и точном координатном столе с ЧПУ срезает слой фольги в нужных местах.

Желание немедленно купить специализированный станок прошло после изучения цен от поставщика. Выкладывать такие деньги за устройство я, как и большинство хоббийщиков, не готов. Поэтому решено было сделать станок самостоятельно.

Понятно, что устройство должно состоять из координатного стола, перемещающего режущий инструмент в нужную точку и самого режущего устройства.

В интернете достаточно примеров того, как сделать координатный стол на любой вкус. Например те же RepRap справляются с этой задачей (с поправками на точность).

С одного из моих предыдущих хобби-проектов по созданию плоттера у меня остался самодельный координатный стол. Поэтому основная задача заключалась в создании режущего инструмента.

Вполне логичным шагом могло стать оснащение плоттера миниатюрным гравером вроде Dremel. Но проблема в том, что плоттер, который можно дешево собрать в домашних условиях сложно сделать с необходимой жесткостью, параллельностью его плоскости к плоскости текстолита (при этом даже текстолит сам по себе может быть изогнутым). В итоге вырезать на нём платы более менее хорошего качества не представлялось бы возможным. К тому же не в пользу использования фрезерной обработки говорил тот факт, что фреза тупится со временем и утрачивает свои режущие свойства. Вот было бы здорово, если бы медь с поверхности текстолита можно было удалять бесконтактным способом.

Уже существуют лазерные станки немецкого производителя LPKF, в которых фольга просто испаряется мощным полупроводниковым лазером инфракрасного диапазона. Станки отличаются точностью и скоростью обработки, но их цена ещё выше чем у фрезерных, а собрать из доступных всем материалов такую вещь и как-то её удешевить пока не представляется простой задачей.

Из всего вышесказанного я сформировал некоторые требования к желаемому устройству:

  • Цена сопоставимая со стоимостью среднего домашнего 3д-принтера
  • Бесконтактное удаление меди
  • Возможность собрать устройство из доступных компонентов самостоятельно в домашних условиях

Так я начал размышлять о возможной альтернативе лазеру в области бесконтактного удаления меди с текстолита. И наткнулся на метод электроискровой обработки, который давно применяется в металлообработке для изготовления точных металлических деталей.

При таком методе металл удаляется электрическими разрядами, которые испаряют и разбрызгивают его с поверхности заготовки. Таким образом образуются кратеры, размер которых зависит от энергии разряда, его длительности и, конечно же, типа материала заготовки. В простейшем виде электрическую эрозию стали использовать в 40-х года XX века для пробивания отверстий в металлических деталях. В отличие от традиционной механической обработки отверстия можно было получить практически любой формы. В настоящее время данный метод активно применяется в металлообработке и породил целую серию видов станков.

Обязательной частью таких станков является генератор импульсов тока, система подачи и перемещения электрода — именно электрод (обычно медный, латунный или графитовый) является рабочим инструментом такого станка. Простейший генератор импульсов тока представляет собой простой конденсатор нужного номинала, подключенный к источнику постоянного напряжения через токоограничивающий резистор. При этом емкость и напряжение определяют энергию разряда, которая в свою очередь определяет размеры кратеров, а значит и чистоту обработки. Правда есть один существенный нюанс — напряжение на конденсаторе в рабочем режиме определяется напряжением пробоя. Последнее же практически линейно зависит от зазора между электродом и заготовкой.

За вечер был изготовлен прототип эрозионного инструмента, представляющий собой соленоид, к якорю которого прикреплена медная проволочка. Соленоид обеспечивал вибрацию проволоки и прерывание контакта. В качестве источника питания был использован ЛАТР: выпрямленный ток заряжал конденсатор, а переменный питал соленоид. Эта конструкция была также закреплена в держателе ручки плоттера. В целом, результат оправдал ожидания, и головка оставляла на фольге сплошные полосы со рваными краями.


Способ явно имел право на жизнь, но требовалось решить одну задачу — компенсировать расход проволоки, которая расходуется при работе. Для этого требовалось создать механизм подачи и блок управления для него.

После этого, всё свободное время я начал проводить в одном из хакспейсов нашего города, где есть станки для металлообработки. Начались продолжительные попытки сделать приемлемое режущее устройство. Эрозионная головка состояла из пары шток-втулка, обеспечивающих вертикальную вибрацию, возвратной пружины и протяжного механизма. Для управления соленоидом потребовалось изготовить несложную схему состоящую из генератора импульса заданной длины на NE555, MOSFET-транзистора и индуктивного датчика тока. Первоначально предполагалось использовать режим автоколебаний, то есть подавать импульс на ключ сразу после импульса тока. При этом частота колебаний зависит от величины зазора и управление приводом производится согласно измерению периода автоколебаний. Однако стабильный автоколебательный режим оказался возможен в диапазоне амплитуд колебания головки, который составлял меньше половины максимального. Поэтому я принял решение использовать фиксированную частоту колебаний, генерируемых аппаратным ШИМом. При этом о состоянии зазора между проволокой и платой можно судить по времени между окончанием открывающего импульса и первым импульсом тока. Для большей стабильности при работе и улучшении частотных характеристик соленоид был закреплен над механизмом протяжки проволоки, а якорь размещен на дюралевой скобе. После этих доработок удалось добиться устойчивой работы на частотах до 35 Гц.

Закрепив режущую головку на плоттере, я начал опыты по прорезанию изолирующих дорожек на печатных платах. Первый результат достигнут и головка более-менее устойчиво обеспечивает непрерывный рез. Вот видео, демонстрирующее что получилось:

Принципиальная возможность изготавливать платы при помощи электроискровой обработки подтверждена. В ближайших планах повысить точность, увеличить скорость обработки и чистоту реза, а также выложить часть наработок в открытый доступ. Также планирую адаптировать модуль под использование с RepRap. Буду рад идеям и замечаниям в комментариях.

habr.com

Изготовление высококачественных печатных плат в «домашних» условиях

Таити!.. Таити!..
Не были мы ни на каком Таити!
Нас и тут неплохо кормят!
© Кот из мультика

Вступление с отступлением

Как в бытовых и лабораторных условиях делали платы раньше? Способов было несколько — например:

  1. рисовали будущие проводники рейсфедерами;
  2. гравировали и резали резаками;
  3. наклеивали скотч или изоленту, потом рисунок вырезали скальпелем;
  4. изготавливали простейшие трафареты с последующим нанесением рисунка с помощью аэрографа.

Недостающие элементы дорисовывали рейсфедерами и ретушировали скальпелем.

Это был длительный и трудоемкий процесс, требующий от «рисователя» недюжинных художественных способностей и аккуратности. Толщина линий с трудом укладывалась в 0,8 мм, точность повторения была никакая, каждую плату нужно было рисовать отдельно, что сильно сдерживало выпуск даже очень маленькой партии печатных плат (далее — ПП).

Что же мы имеем сегодня?

Прогресс не стоит на месте. Времена, когда радиолюбители рисовали ПП каменными топорами на шкурах мамонтов, канули в лету. Появление на рынке общедоступной химии для фотолитографии открывает перед нами совсем иные перспективы производства ПП без металлизации отверстий в домашних условиях.

Коротко рассмотрим химию, используемую сегодня для производства ПП.

Фоторезист

Можно использовать жидкий или пленочный. Пленочный в данной статье рассматривать не будем вследствие его дефицитности, сложностей прикатывания к ПП и более низкого качества получаемых на выходе печатных плат.

После анализа предложений рынка я остановился на POSITIV 20 в качестве оптимального фоторезиста для домашнего производства ПП.

Назначение:
POSITIV 20 — фоточувствительный лак. Используется при мелкосерийном изготовлении печатных плат, гравюр на меди, при проведении работ, связанных с переносом изображений на различные материалы.
Свойства:
Высокие экспозиционные характеристики обеспечивают хорошую контрастность переносимых изображений.
Применение:
Применяется в областях, связанных с переносом изображений на стекло, пластики, металлы и пр. при мелкосерийном производстве. Способ применения указан на баллоне.
Характеристики:
Цвет: синий
Плотность: при 20°C 0,87 г/см3
Время высыхания: при 70°C 15 мин.
Расход: 15 л/м2
Максимальная фоточувствительность: 310-440 нм

Подробнее о POSITIV 20 можно почитать здесь.

В инструкции к фоторезисту написано, что хранить его можно при комнатной температуре и он не подвержен старению. Категорически не согласен! Хранить его нужно в прохладном месте, например, на нижней полке холодильника, где обычно поддерживается температура +2…+6°C. Но ни в коем случае не допускайте отрицательных температур!

Если использовать фоторезисты, продаваемые «на розлив» и не имеющие светонепроницаемой упаковки, требуется позаботиться о защите от света. Хранить нужно в полной темноте и температуре +2…+6°C.

Просветитель

Аналогично, наиболее подходящим просветителем я считаю постоянно используемый мной TRANSPARENT 21.

Назначение:
Позволяет непосредственно переносить изображения на поверхности, покрытые светочувствительной эмульсией POSITIV 20 или другим фоторезистом.
Свойства:
Придает прозрачность бумаге. Обеспечивает пропускание ультрафиолетовых лучей.
Применение:
Для быстрого переноса контуров рисунков и схем на подложку. Позволяет значительно упростить процесс репродуцирования и сократить временные затраты.
Характеристики:
Цвет: прозрачный
Плотность: при 20°C 0,79 г/см3
Время высыхания: при 20°C 30 мин.
Примечание:
Вместо обычной бумаги с просветителем можно использовать прозрачную пленку для струйных или лазерных принтеров — в зависимости от того, на чем будем печатать фотошаблон.

Проявитель фоторезиста

Существует много различных растворов для проявления фоторезиста.

Советуют проявлять с помощью раствора «жидкое стекло». Его химический состав: Na2SiO3*5H2O. Это вещество обладает огромным числом достоинств. Наиболее важным является то, что в нем очень трудно передержать ПП — вы можете оставить ПП на не фиксированное точно время. Раствор почти не изменяет своих свойств при перепадах температуры (нет риска распада при увеличении температуры), также имеет очень большой срок хранения — его концентрация остается постоянной не менее пары лет. Отсутствие проблемы передержки в растворе позволит увеличить его концентрацию для уменьшения времени проявления ПП. Рекомендуют смешивать 1 часть концентрата с 180 частями воды (чуть более 1,7 г силиката в 200 мл воды), но возможно сделать более концентрированную смесь, чтобы изображение проявлялось примерно за 5 секунд без риска разрушения поверхности при передержке. При невозможности приобретения силиката натрия используйте углекислый натрий (Na2СO3) или углекислый калий (K2СO3).

Также рекомендуют бытовое средство для прочистки сантехники — «Крот».

Не пробовал ни первое, ни второе, поэтому расскажу, чем проявляю без каких-либо проблем уже несколько лет. Я использую водный раствор каустической соды. На 1 литр холодной воды — 7 граммов каустической соды. Если нет NaOH, применяю раствор KOH, вдвое увеличив концентрацию щелочи в растворе. Время проявления — 30-60 секунд при правильной экспозиции. Если по истечении 2 минут рисунок не проявляется (или проявляется слабо), и начинает смываться фоторезист с заготовки — значит, неправильно выбрано время экспозиции: нужно увеличивать. Если, наоборот, быстро проявляется, но смываются и засвеченные участки, и незасвеченные — либо слишком велика концентрация раствора, либо низкое качество фотошаблона (ультрафиолет свободно проходит сквозь «черное»): нужно увеличивать плотность печати шаблона.

Растворы травления меди

Лишнюю медь с печатных плат стравливают с помощью разных травителей. Среди людей, занимающихся этим дома, зачастую распространены персульфат аммония, перекись водорода + соляная кислота, раствор медного купороса + поваренная соль.

Я всегда травлю хлорным железом в стеклянной посуде. При работе с раствором нужно быть осторожным и внимательным: при попадании на одежду и предметы остаются ржавые пятна, которые с трудом удаляются слабым раствором лимонной (сок лимона) или щавелевой кислоты.

Концентрированный раствор хлорного железа подогреваем до 50-60°C, в него погружаем заготовку, стеклянной палочкой с ватным тампоном на конце аккуратно и без усилия водим по участкам, где хуже стравливается медь, — этим достигается более ровное травление по всей площади ПП. Если не выравнивать принудительно скорость, увеличивается требуемая продолжительность травления, а это со временем приводит к тому, что на участках, где медь уже стравилась, начинается подтравливание дорожек. В итоге имеем совсем не то, что хотели получить. Очень желательно обеспечить непрерывное перемешивание травильного раствора.

Химия для смывки фоторезиста

Чем проще всего смыть уже ненужный фоторезист после травления? После многократных проб и ошибок я остановился на обыкновенном ацетоне. Когда его нет — смываю любым растворителем для нитрокрасок.

Итак, делаем печатную плату

С чего начинается высококачественная печатная плата? Правильно:

Создание высококачественного фотошаблона

Для его изготовления можно воспользоваться практически любым современным лазерным или струйным принтером. Учитывая, что мы используем в рамках данной статьи позитивный фоторезист, — там, где на ПП должна остаться медь, принтер должен рисовать черным. Где не должно быть меди — принтер ничего не должен рисовать. Очень важный момент при печати фотошаблона: требуется установить максимальный полив красителя (в настройках драйвера принтера). Чем более черными будут закрашенные участки, тем больше шансов получить великолепный результат. Цвет не нужен, достаточно черного картриджа. Из той программы (рассматривать программы не будем: каждый волен выбирать сам — от PCAD до Paintbrush), в которой рисовался фотошаблон, печатаем на обычном листе бумаги. Чем выше разрешение при печати и чем качественнее бумага, тем выше будет качество фотошаблона. Рекомендую не ниже 600 dpi, бумага не должна быть сильно плотной. При печати учитываем, что той стороной листа, на которую наносится краска, шаблон будет класться на заготовку ПП. Если сделать иначе, края у проводников ПП будут размытыми, нечеткими. Даем просохнуть краске, если это был струйный принтер. Далее пропитываем бумагу TRANSPARENT 21, даем просохнуть и… фотошаблон готов.

Вместо бумаги и просветителя можно и даже очень желательно использовать прозрачную пленку для лазерных (при печати на лазерном принтере) или струйных (для струйной печати) принтеров. Учтите, что у этих пленок стороны неравнозначны: только одна рабочая. Если будете использовать лазерную печать, крайне рекомендую сделать «сухой» прогон листа пленки перед печатью — просто прогоните лист через принтер, имитируя печать, но ничего не печатая. Зачем это нужно? При печати фьюзер (печка) прогреет лист, что неизбежно приведет к его деформации. Как следствие — ошибка в геометрии ПП на выходе. При изготовлении двусторонних ПП это чревато несовпадением слоев со всеми вытекающими… А с помощью «сухого» прогона мы прогреем лист, он деформируется и будет готов к печати шаблона. При печати лист во второй раз пройдет сквозь печку, но деформация при этом будет куда менее значительной — проверено неоднократно.

Если ПП несложная, можно нарисовать ее вручную в очень удобной программе с русифицированным интерфейсом — Sprint Layout 3.0R (~650 КБ).

На подготовительном этапе рисовать не слишком громоздкие электрические схемы очень удобно в также русифицированной программе sPlan 4.0 (~450 КБ).

Так выглядят готовые фотошаблоны, распечатанные на принтере Epson Stylus Color 740:

         

Печатаем только черным, с максимальным поливом красителя. Материал — прозрачная пленка для струйных принтеров.

Подготовка поверхности ПП к нанесению фоторезиста

Для производства ПП используются листовые материалы с нанесенной медной фольгой. Самые распространенные варианты — с толщиной меди 18 и 35 мкм. Чаще всего для производства ПП в домашних условиях используются листовые текстолит (прессованная с клеем ткань в несколько слоев), стеклотекстолит (то же самое, но в качестве клея используются эпоксидные компаунды) и гетинакс (прессованная бумага с клеем). Реже — ситтал и поликор (высокочастотная керамика — в домашних условиях применяется крайне редко), фторопласт (органический пластик). Последний также применяется для изготовления высокочастотных устройств и, имея очень хорошие электротехнические характеристики, может использоваться везде и всюду, но его применение ограничивает высокая цена.

Прежде всего, необходимо убедиться в том, что заготовка не имеет глубоких царапин, задиров и тронутых коррозией участков. Далее желательно до зеркала отполировать медь. Полируем не особо усердствуя, иначе сотрем и без того тонкий слой меди (35 мкм) или, во всяком случае, добьемся разной толщины меди на поверхности заготовки. А это, в свою очередь, приведет к разной скорости вытравливания: быстрее стравится там, где тоньше. Да и более тонкий проводник на плате — не всегда хорошо. Особенно, если он длинный и по нему будет течь приличный ток. Если медь на заготовке качественная, без грехов, то достаточно обезжирить поверхность.

Нанесение фоторезиста на поверхность заготовки

Располагаем плату на горизонтальной или слегка наклоненной поверхности и наносим состав из аэрозольной упаковки с расстояния примерно 20 см. Помним, что важнейший враг при этом — пыль. Каждая частица пыли на поверхности заготовки — источник проблем. Чтобы создать однородное покрытие, распыляем аэрозоль непрерывными зигзагообразными движениями, начиная из верхнего левого угла. Не применяйте аэрозоль в избыточных количествах, так как это вызывает нежелательные подтеки и приводит к образованию неоднородного по толщине покрытия, требующего более длительного времени экспозиции. Летом при высокой температуре окружающей среды может потребоваться повторная обработка, либо необходимо распылять аэрозоль с меньшего расстояния — для уменьшения потерь от испарения. При распылении не наклоняйте баллон сильно — это приводит к повышенному расходу газа-пропеллента и как следствие — аэрозольный баллон прекращает работу, хотя в нем остается еще фоторезист. Если вы получаете неудовлетворительные результаты при аэрозольном нанесении фоторезиста, используйте центрифужное покрытие. В этом случае фоторезист наносится на плату, закрепленную на вращающемся столе с приводом 300-1000 оборотов в минуту. После окончания нанесения покрытия плата не должна подвергаться воздействию сильного света. По цвету покрытия можно приблизительно определить толщину нанесенного слоя:

  • светло-серый синий — 1-3 микрона;
  • темно-серый синий — 3-6 микрон;
  • синий — 6-8 микрон;
  • темно-синий — более 8 микрон.

На меди цвет покрытия может иметь зеленоватый оттенок.

Чем тоньше покрытие на заготовке, тем лучше результат.

Я всегда наношу фоторезист на центрифуге. В моей центрифуге скорость вращения 500-600 об/мин. Крепление должно быть простым, зажим производится только по торцам заготовки. Закрепляем заготовку, запускаем центрифугу, брызгаем на центр заготовки и наблюдаем, как фоторезист тончайшим слоем растекается по поверхности. Центробежными силами излишки фоторезиста будут сброшены с будущей ПП, поэтому очень рекомендую предусмотреть защитную стенку, чтобы не превратить рабочее место в свинарник. Я использую обыкновенную кастрюлю, в днище которой по центру сделано отверстие. Через это отверстие проходит ось электродвигателя, на которой установлена площадка крепления в виде креста из двух алюминиевых реек, по которым «бегают» уши зажима заготовок. Уши сделаны из алюминиевых уголков, зажимаемых на рейке гайкой типа «барашек». Почему алюминий? Маленькая удельная масса и, как следствие, меньше биения при отклонении центра массы вращения от центра вращения оси центрифуги. Чем точнее отцентрировать заготовку, тем меньше будут биения за счет эксцентриситета массы и тем меньше усилий потребуется для жесткого крепления центрифуги к основанию.

Фоторезист нанесен. Даем ему просохнуть в течение 15-20 минут, переворачиваем заготовку, наносим слой на вторую сторону. Даем еще 15-20 минут на сушку. Не забываем о том, что попадание прямого солнечного света и пальцев на рабочие стороны заготовки недопустимы.

Дубление фоторезиста на поверхности заготовки

Помещаем заготовку в духовку, плавно доводим температуру до 60-70°C. При этой температуре выдерживаем 20-40 минут. Важно, чтобы поверхностей заготовки ничто не касалось — допустимы только касания торцов.

Выравнивание верхнего и нижнего фотошаблонов на поверхностях заготовки

На каждом из фотошаблонов (верхний и нижний) должны быть метки, по которым на заготовке нужно сделать 2 отверстия — для совмещения слоев. Чем дальше друг от друга метки, тем выше точность совмещения. Обычно я их ставлю по диагонали шаблонов. По этим меткам на заготовке с помощью сверлильного станка строго под 90° сверлим два отверстия (чем тоньше отверстия, тем точнее совмещение — я использую сверло 0,3 мм) и совмещаем по ним шаблоны, не забывая о том, что шаблон должен прикладываться к фоторезисту той стороной, на которую была произведена печать. Прижимаем шаблоны к заготовке тонкими стеклами. Стекла предпочтительнее всего использовать кварцевые — они лучше пропускают ультрафиолет. Еще лучшие результаты дает оргстекло (плексиглас), но оно имеет неприятное свойство царапаться, что неизбежно скажется на качестве ПП. При небольших размерах ПП можно использовать прозрачную крышку от упаковки компакт-диска. За неимением таких стекол можно использовать и обычное оконное, увеличив время экспозиции. Важно, чтобы стекло было ровным, обеспечивая ровное прилегание фотошаблонов к заготовке, иначе невозможно будет получить качественные края дорожек на готовой ПП.


Заготовка с фотошаблоном под оргстеклом. Используем коробку из-под компакт-диска.
Экспозиция (засветка)

Время, требуемое для экспонирования, зависит от толщины слоя фоторезиста и интенсивности источника света. Лак-фоторезист POSITIV 20 чувствителен к ультрафиолетовым лучам, максимум чувствительности приходится на участок с длиной волны 360-410 нм.

Лучше всего экспонировать под лампами, диапазон излучения которых находится в ультрафиолетовой области спектра, но если такой лампы у вас нет — можно использовать и обычные мощные лампы накаливания, увеличив время экспозиции. Не начинайте засветку до момента стабилизации освещения от источника — необходимо, чтобы лампа прогрелась в течение 2-3 минут. Время экспозиции зависит от толщины покрытия и обычно составляет 60-120 секунд при расположении источника света на расстоянии 25-30 см. Используемые пластины стекла могут поглощать до 65% ультрафиолета, поэтому в таких случаях необходимо увеличивать время экспозиции. Лучшие результаты достигаются при использовании прозрачных плексигласовых пластин. При применении фоторезиста с длительным сроком хранения время экспонирования может потребоваться увеличить вдвое — помните: фоторезисты подвержены старению!

Примеры использования различных источников света:

Источник светаВремяРасстояниеПримечание
ртутная лампа Philips HPR1253 мин.30 смпокрытие из кварцевого стекла толщиной 5 мм
ртутная лампа 1000W1,5 мин.50 смпокрытие из кварцевого стекла толщиной 5 мм
ртутная лампа 500W2,5 мин.50 смпокрытие из кварцевого стекла толщиной 5 мм
кварцевая лампа 300W3-4 мин.30 смпокрытие из кварцевого стекла толщиной 5 мм
солнечный свет5-10 мин.лето, в полдень, безоблачнопокрытие из кварцевого стекла толщиной 5 мм
лампы Osram-Vitalux 300W4-8 мин.40 смпокрытие из кварцевого стекла толщиной 8 мм


Лампы УФ-излучения

Каждую сторону экспонируем по очереди, после экспозиции даем выстояться заготовке 20-30 минут в затемненном месте.

Проявление экспонированной заготовки

Проявляем в растворе NaOH (каустическая сода) — подробнее смотрите в начале статьи — при температуре раствора 20-25°C. Если до 2 минут проявления нет — мало время экспозиции. Если проявляется хорошо, но смываются и полезные участки — вы перемудрили с раствором (слишком велика концентрация) или слишком велико время экспозиции при данном источнике излучения или фотошаблон низкого качества — недостаточно насыщенный печатаемый черный цвет позволяет ультрафиолету засвечивать заготовку.

При проявлении я всегда очень бережно, без усилий «катаю» ватным тампоном на стеклянной палочке по тем местам, где должен смыться засвеченный фоторезист, — это ускоряет процесс.

Промывка заготовки от щелочи и остатков отслоившегося засвеченного фоторезиста

Я делаю это под водопроводным краном — обычной водопроводной водой.

Повторное дубление фоторезиста

Помещаем заготовку в духовку, плавно поднимаем температуру и при температуре 60-100°C выдерживаем 60-120 минут — рисунок становится прочным и твердым.

Проверка качества проявления

Кратковременно (на 5-15 секунд) погружаем заготовку в подогретый до температуры 50-60°C раствор хлорного железа. Быстро промываем проточной водой. В местах, где фоторезиста нет, начинается интенсивное травление меди. Если где-то случайно остался фоторезист, аккуратно механически удаляем его. Удобно это делать обычным или офтальмологическим скальпелем, вооружившись оптикой (очки для пайки, лупа часовщика, лупа на штативе, микроскоп).

Травление

Травим в концентрированном растворе хлорного железа с температурой 50-60°C. Желательно обеспечить непрерывную циркуляцию травильного раствора. Плохо стравливающиеся места аккуратно «массируем» ватным тампоном на стеклянной палочке. Если хлорное железо свежеприготовленное, время травления обычно не превышает 5-6 минут. Промываем заготовку проточной водой.

         
Плата вытравлена

Как готовить концентрированный раствор хлорного железа? Растворяем в слегка (до 40°C) подогретой воде FeCl3 до тех пор, пока не перестанет растворяться. Фильтруем раствор. Хранить нужно в затемненном прохладном месте в герметичной неметаллической упаковке — в стеклянных бутылках, например.

Удаление уже ненужного фоторезиста

Смываем фоторезист с дорожек ацетоном или растворителем для нитрокрасок и нитроэмалей.

Сверление отверстий

Диаметр точки будущего отверстия на фотошаблоне желательно подбирать таким, чтобы впоследствии было удобно сверлить. Например, при требуемом диаметре отверстия 0,6-0,8 мм диаметр точки на фотошаблоне должен быть около 0,4-0,5 мм — в таком случае сверло будет хорошо центроваться.

Желательно использовать сверла, покрытые карбидом вольфрама: сверла из быстрорежущих сталей очень быстро изнашиваются, хотя сталь можно применять для сверления одиночных отверстий большого диаметра (больше 2 мм), так как сверла с напылением карбида вольфрама такого диаметра слишком дорогие. При сверлении отверстий диаметром менее 1 мм лучше использовать вертикальный станок, иначе ваши сверла будут быстро ломаться. Если сверлить ручной дрелью — неизбежны перекосы, ведущие к неточной стыковке отверстий между слоями. Движение сверху вниз на вертикальном сверлильном станке самое оптимальное с точки зрения нагрузки на инструмент. Карбидные сверла изготавливают с жестким (т.е. сверло точно соответствует диаметру отверстия) или с толстым (иногда называют «турбо-») хвостовиком, имеющим стандартный размер (обычно, 3,5 мм). При сверлении сверлами с карбидным напылением важно жестко закрепить ПП, так как такое сверло при движении вверх может приподнять ПП, перекосить перпендикулярность и вырвать фрагмент платы.

Сверла маленьких диаметров обычно вставляются либо в цанговый патрон (различных размеров), либо в трехкулачковый патрон. Для точной фиксации закрепление в трехкулачковом патроне — не самый лучший вариант, и маленький размер сверла (меньше 1 мм) быстро делает желобки в зажимах, теряя хорошую фиксацию. Поэтому для сверл диаметром меньше 1 мм лучше использовать цанговый патрон. На всякий случай приобретите дополнительный набор, содержащий запасные цанги для каждого размера. Некоторые недорогие сверла производят с пластиковыми цангами — выбросите их и купите металлические.

Для получения приемлемой точности необходимо правильно организовать рабочее место, то есть, во-первых, обеспечить хорошее освещение платы при сверлении. Для этого можно использовать галогенную лампу, прикрепив ее на штативе для возможности выбирать позицию (освещать правую сторону). Во-вторых, поднять рабочую поверхность примерно на 15 см выше столешницы для лучшего визуального контроля над процессом. Неплохо было бы удалять пыль и стружку в процессе сверления (можно использовать обычный пылесос), но это не обязательно. Надо отметить, что пыль от стекловолокон, образующаяся при сверлении, очень колкая и при попадании на кожу вызывает ее раздражение. И, наконец, при работе очень удобно пользоваться ножным включателем сверлильного станка.

Типичные размеры отверстий:

  • переходные отверстия — 0,8 мм и менее;
  • интегральные схемы, резисторы и т.д. — 0,7-0,8 мм;
  • большие диоды (1N4001) — 1,0 мм;
  • контактные колодки, триммеры — до 1,5 мм.

Старайтесь избегать отверстий диаметром менее 0,7 мм. Всегда держите не менее двух запасных сверл 0,8 мм и менее, так как они всегда ломаются именно в тот момент, когда вам срочно надо сделать заказ. Сверла 1 мм и больше намного надежнее, хотя и для них неплохо бы иметь запасные. Когда вам надо изготовить две одинаковые платы, то для экономии времени их можно сверлить одновременно. При этом необходимо очень аккуратно сверлить отверстия в центре контактной площадки около каждого угла ПП, а для больших плат — отверстия, расположенные близко от центра. Положите платы друг на друга и, используя центрующие отверстия 0,3 мм в двух противоположных углах и штифты в качестве колышков, закрепите платы относительно друг друга.

При необходимости можно зенковать отверстия сверлами большего диаметра.

Лужение меди на ПП

Если нужно облудить дорожки на ПП, можно воспользоваться паяльником, мягким низкоплавким припоем, спиртоканифольным флюсом и оплеткой коаксиального кабеля. При больших объемах лудят в ванных, наполненных низкотемпературными припоями с добавлением флюсов.

Наиболее популярным и простым расплавом для лужения является легкоплавкий сплав «Розе» (олово — 25%, свинец — 25%, висмут — 50%), температура плавления которого 93-96°C. Плату при помощи щипцов помещают под уровень жидкого расплава на 5-10 секунд и, вынув, проверяют, вся ли медная поверхность покрыта равномерно. При необходимости операцию повторяют. Сразу же после вынимания платы из расплава его остатки удаляют либо с помощью резинового ракеля, либо резким встряхиванием в направлении, перпендикулярном плоскости платы, удерживая ту в зажиме. Другим способом удаления остатков сплава «Розе» является нагрев платы в термошкафу и встряхивание. Операция может проводиться повторно для достижения монотолщинного покрытия. Чтобы предотвратить окисление горячего расплава, в емкость для лужения добавляют глицерин, так чтобы его уровень покрывал расплав на 10 мм. После окончания процесса плата отмывается от глицерина в проточной воде. Внимание! Данные операции предполагают работу с установками и материалами, находящимися под действием высокой температуры, поэтому для предотвращения ожога необходимо пользоваться защитными перчатками, очками и фартуками.

Операция лужения сплавом олово-свинец протекает аналогично, но более высокая температура расплава ограничивает область применения данного способа в условиях кустарного производства.

Хочу поделиться еще одним способом лужения при помощи сплава «Розе», также проверенным на практике. Обыкновенная водопроводная вода наливается в консервную банку или небольшую мисочку, добавляется немного лимонной кислоты или уксуса, ставится на плиту. В кипящую воду помещается плата, высыпается несколько застывших капель сплава «Розе», которые тут же плавятся в кипящей воде, и ваткой, намотанной на длинный пинцет или палочку (чтобы не обжечься паром), аккуратно размазываются по дорожкам. По завершении процесса вода сливается, а застывшие остатки сплава складываются в какую-либо емкость до следующего использования.

Не забудьте после лужения очистить плату от флюса и тщательно обезжирить.

Если у вас большое производство — можно использовать химическое лужение.

Нанесение защитной маски

Операции с нанесением защитной маски в точности повторяют все, что было написано выше: наносим фоторезист, сушим, дубим, центруем фотошаблоны масок, экспонируем, проявляем, промываем и еще раз дубим. Само собой, пропускаем шаги с проверкой качества проявления, травлением, удалением фоторезиста, лужением и сверлением. В самом конце дубим маску в течение 2 часов при температуре около 90-100°C — она станет прочной и твердой, как стекло. Образованная маска защищает поверхность ПП от внешнего воздействия и предохраняет от теоретически возможных замыканий при эксплуатации. Также она играет не последнюю роль при автоматической пайке — не дает «сесть» припою на соседние участки, замыкая их.

Все, двусторонняя печатная плата с маской готова

Мне приходилось таким образом делать ПП с шириной дорожек и шагом между ними до 0,05 мм (!). Но это уже ювелирная работа. А без особых усилий можно делать ПП с шириной дорожки и шагом между ними 0,15-0,2 мм.

На плату, показанную на фотографиях, я маску не наносил — не было такой необходимости.

       
Печатная плата в процессе монтажа на нее компонентов

А вот и само устройство, для которого делалась ПП:

Это сотовый телефонный мост, позволяющий в 2-10 раз снизить стоимость услуг мобильной связи — ради этого стоило возиться с ПП ;). ПП с распаянными компонентами находится в подставке. Раньше там было обыкновенное зарядное устройство для аккумуляторов мобильного телефона.

Дополнительная информация

Металлизация отверстий

В домашних условиях можно выполнить даже металлизацию отверстий. Для этого внутренняя поверхность отверстий обрабатывается 20-30-процентным раствором азотнокислого серебра (ляпис). Затем поверхность очищается ракелем и плата сушится на свету (можно использовать УФ-лампу). Суть этой операции в том, что под действием света азотнокислое серебро разлагается, и на плате остаются вкрапления серебра. Далее производится химическое осаждение меди из раствора: сернокислая медь (медный купорос) — 2 г, едкий натр — 4 г, нашатырный спирт 25-процентный — 1 мл, глицерин — 3,5 мл, формалин 10-процентный — 8-15 мл, вода — 100 мл. Срок хранения приготовленного раствора очень мал — готовить нужно непосредственно перед применением. После осаждения меди плату промывают и сушат. Слой получается очень тонким, его толщину необходимо увеличить до 50 мкм гальваническим способом.

Раствор для нанесения медного покрытия гальваническим способом:
На 1 литр воды 250 г сульфата меди (медный купорос) и 50-80 г концентрированной серной кислоты. Анодом служит медная пластинка, подвешенная параллельно покрываемой детали. Напряжение должно быть 3-4 В, плотность тока — 0,02-0,3 A/см2, температура — 18-30°C. Чем меньше ток, тем медленнее идет процесс металлизации, но тем качественнее получаемое покрытие.


Фрагмент печатной платы, где видна металлизация в отверстии
Самодельные фоторезисты

Фоторезист на основе желатина и бихромата калия:
Первый раствор: 15 г желатина залить 60 мл кипяченой воды и оставить для набухания на 2-3 часа. После набухания желатина поставить емкость на водяную баню при температуре 30-40°C до полного растворения желатина.
Второй раствор: в 40 мл кипяченой воды растворить 5 г двухромовокислого калия (хромпик, порошок ярко-оранжевого цвета). Растворять при слабом рассеянном освещении.
В первый раствор при интенсивном перемешивании влить второй. В полученную смесь пипеткой добавить несколько капель нашатырного спирта до получения соломенного цвета. Фотоэмульсия наносится на подготовленную плату при очень слабом освещении. Плата сушится до «отлипа» при комнатной температуре в полной темноте. После экспонирования плату при слабом рассеянном освещении промыть в теплой проточной воде до удаления незадубленного желатина. Чтобы лучше оценить результат, можно окрасить участки с неудаленным желатином раствором марганцовки.

Усовершенствованный самодельный фоторезист:
Первый раствор: 17 г столярного клея, 3 мл водного раствора аммиака, 100 мл воды оставить для набухания на сутки, затем греть на водяной бане при 80°C до полного растворения.
Второй раствор: 2,5 г бихромата калия, 2,5 г бихромата аммония, 3 мл водного раствора аммиака, 30 мл воды, 6 мл спирта.
Когда первый раствор остынет до 50°C, при энергичном перемешивании влейте в него второй раствор и полученную смесь профильтруйте (эту и последующие операции необходимо проводить в затемненном помещении, солнечный свет недопустим!). Эмульсия наносится при температуре 30-40°C. Дальше — как в первом рецепте.

Фоторезист на основе бихромата аммония и поливинилового спирта:
Готовим раствор: поливиниловый спирт — 70-120 г/л, бихромат аммония — 8-10 г/л, этиловый спирт — 100-120 г/л. Избегать яркого света! Наносится в 2 слоя: первый слой — сушка 20-30 минут при 30-45°C — второй слой — сушка 60 минут при 35-45°C. Проявитель — 40-процентный раствор этилового спирта.

Химическое лужение

Прежде всего, плату необходимо декапировать, чтобы удалить образовавшийся окисел меди: 2-3 секунды в 5-процентном растворе соляной кислоты с последующей промывкой в проточной воде.

Достаточно просто осуществлять химическое лужение погружением платы в водный раствор, содержащий хлорное олово. Выделение олова на поверхности медного покрытия происходит при погружении в такой раствор соли олова, в котором потенциал меди более электроотрицателен, чем материал покрытия. Изменению потенциала в нужном направлении способствует введение в раствор соли олова комплексообразующей добавки — тиокарбамида (тиомочевины). Такого типа растворы имеют следующий состав (г/л):

1234
Двухлористое олово SnCl2*2H2O5,55-82010
Тиокарбамид CS(NH2)25035-50
Серная кислота H2SO430-40
Винная кислота C4H6O635
Каустическая сода NaOH6
Молочнокислый натрий200
Сернокислый алюминий-аммоний (алюмоаммонийные квасцы)300
Температура, °C60-7050-6018-2518-25

Среди перечисленных наиболее распространены растворы 1 и 2. Иногда в качестве поверхностно-активного вещества для 1-го раствора предлагается использование моющего средства «Прогресс» в количестве 1 мл/л. Добавление во 2-й раствор 2-3 г/л нитрата висмута приводит к осаждению сплава, содержащего до 1,5% висмута, что улучшает паяемость покрытия (препятствует старению) и многократно увеличивает срок хранения до пайки компонентов у готовой ПП.

Для консервации поверхности применяют аэрозольные распылители на основе флюсующих композиций. Нанесенный на поверхность заготовки лак после высыхания образует прочную гладкую пленку, которая препятствует окислению. Одним из популярных веществ является «SOLDERLAC» фирмы Cramolin. Последующая пайка проводится прямо по обработанной поверхности без дополнительного удаления лака. В особо ответственных случаях пайки лак можно удалить спиртовым раствором.

Искусственные растворы для лужения ухудшаются с течением времени, особенно при контакте с воздухом. Поэтому если у вас большие заказы бывают нечасто, то старайтесь приготовить сразу небольшое количество раствора, достаточное для лужения нужного количества ПП, а остатки раствора храните в закрытой емкости (идеально подходят бутылки типа используемых в фотографии, не пропускающие воздух). Также необходимо защищать раствор от загрязнения, которое может сильно ухудшить качество вещества.

В заключение хочу сказать, что все же лучше использовать готовые фоторезисты и не заморачиваться с металлизацией отверстий в домашних условиях — великолепных результатов все равно не получите.


www.ixbt.com

Изготовление двухсторонней печатной платы при помощи пленочного фоторезиста ПНФ-ВЩ

См. также пример работы с фоторезистом ORDYL Alpha 350

В комментариях к заметке про плату-переходник граждане попросили рассказать о том, как я делаю печатные платы с помощью фоторезиста. Несколько подобных просьб пришли также по асе и на электромыло. Хотя я и считаю, что по теме «Изготовление печатных плат в домашних условиях» материала в Интернете и так предостаточно, всё же решил пойти навстречу людям и накропал-таки заметку про фоторезист (файл .pdf, в акробате доступно содержание (букмарки) слева от текста), в ходе которой описал изготовление вот такой вот двухсторонней платы:

Внимание! Всё, что в данной «электронной» заметке идет под грифом «UPD» еще не вошло в заметку «бумажную»! Это следует учитывать при прочтении «бумажной» заметки.

Долго решал, каким образом оформить заметку на сайт. Ибо заметка в формате *.pdf (буду называть ее «бумажная») получилась довольно увесистой (107стр.; 14 метров в архиве), поскольку я постарался подробно изложить в ней все этапы «моего» процесса изготовления печатной платы (ПП). Ну и просто тупо скопировать ее в топик было бы, мягко говоря, неправильно. А посему в итоге решил запостить на сайт основные тезисы из бумажной заметки, снабдив их некоторыми картинками и видеороликами. А уж читатели после ознакомления с таким «превью» сами решат, стоит ли качать архив с файлом *.pdf размером 14Мб.

Итак, рассмотрим изготовление двухсторонней базовой платы для модулей индикации DM-LD0104x-01-xxx, REV.1. Данная ревизия включает в себя исправление некоторых багов первоначальной версии. «В бумаге» эта ревизия давно готова, но вот сделать ПП с ней всё как-то руки не доходили. Ну, а тут такой повод!

Внешний вид проекта ПП:

Мои заготовки фольгированного стеклотекстолита имеют конкретные размеры (так проще и дешевле). Габаритные размеры самой маленькой заготовки – 150х100мм. А габаритные размеры изготавливаемой печатной платы составляют 49,85х32,00мм. Поэтому на стеклотекстолитовой заготовке с учетом размеров «мертвой» зоны поместится 4 платы DM-LD0104x-01-xxx, REV.1:

Поскольку плата двухсторонняя, при ее изготовлении нужно будет как-то совмещать разные слои (стороны). Для этой цели я использую реперные отверстия, которые располагаю несимметрично (это позволит в дальнейшем избежать путаницы с ориентацией фотошаблонов при наложении их на заготовку ПП):

Далее нужно изготовить и слегка доработать заготовку из двухстороннего фольгированного стеклотекстолита. Размеры заготовки, повторюсь, 150х100мм. А доработка включает в себя просто снятие напильником фаски с краев заготовки ПП (с обеих ее сторон) для хорошего прилипания фоторезиста по всей ее поверхности:

Теперь изготавливаем заготовки из фоторезиста под размеры стеклотекстолита. Следует отметить, что при изготовлении печатных плат я использую сухой пленочный негативный фоторезист ПНФ-ВЩ российского производства. Данный фоторезист имеет трехслойную структуру:

Я размечаю нужные размеры заготовок на матовой стороне фоторезиста при помощи линейки и маркера. А затем разрезаю фоторезист на куски по этим раскроечным линиям обычными ножницами (не «безопасным» тупым вариантом, это важно):

Обратите внимание, что при нарезке фоторезиста ножницы я просто веду по линии отреза, а не делаю ими стандартное «хряп-хряп». Это важно, поскольку в противном случае можно в дальнейшем хлебнуть геморроя при отрыве защитной матовой пленки в процессе накатки фоторезиста на поверхность заготовки ПП.

После нарезки фоторезиста прячем его в секретное темное место (коробку или шкаф), чтобы он не засветился ненароком. Далее печатаем на пленке фотошаблоны двух «медных» слоев (для сторон TOP и BOTTOM) и двух слоев маски:

Настоятельно рекомендую использовать для этого струйный принтер – качество фотошаблона получается намного лучше. Ну, а для тех счастливчиков (к коим отношусь и я сам), которые имеют доступ только к лазерникам, опишу процесс допиливания шаблонов до более-менее рабочего состояния.

Итак, после того, как лазерный принтер выплюнул требуемые фотошаблоны, смотрим через них на небо и ужасаемся – «темные» участки шаблонов настолько прозрачны, что плакать хочется:

Ни о каком нормальном экспонировании, естественно, не может идти и речи. Однако, данный косяк вполне лечится – либо ретушированием (что очень долго), либо химическим путем (что относительно дорого, но быстро). Я выбираю второй способ: использую волшебный баллончик с затемнителем тонера «Kruse» (на фото – справа). Принцип работы с затемнителем прост – пшыкаешь его на фотошаблон, сразу после пшыканья дуешь на тонер, а затем радуешься результату:

А результат и впрямь довольно неплох (из видео это не очень понятно):

Конечно, затемнитель не в силах исправить геометрические искажения изображения на фотошаблоне, вносимые при печати лазерником. Но вот поправить жадность принтера до тонера – вполне способен.

UPD: Притащили мне тут девушки из снабжения новую партию затемнителя. Те же самые баллоны, картинки на них такие же, но! Ведет себя затемнитель из данной партии с точностью до наоборот: если после пшыканья на него сразу дуть — он, зараза, ни хера не затемняет. Испаряется, что ли — я так и не понял. После третьего шаблона, который не удалось затемнить, я со злости набрызгал затемнителя от души еще на один шаблон и пошел курить. А когда пришел, чуть не прослезился от счастья — тонер на шаблоне стал чорным-чорным, аки твой сотона. Повторюсь — баллоны на вид те же самые, только дата изготовления отличается. Так что, видимо, стратегию работы с затемнителем надо выяснять «по месту», для конкретного баллона химиката.

Далее перед накаткой фоторезиста на поверхность заготовки ПП нужно просверлить реперные отверстия в стеклотекстолите. Берем иголку и молоток (или что-нибудь его заменяющее, например, кусачки/пассатижи), наклеиваем скотчем на заготовку ПП один из фотошаблонов «медного» слоя (накладывать шаблон нужно тонером вниз!) и размечаем (керним) точки, в которых реперные отверстия должны располагаться:

Дальше снимаем с заготовки ПП фотошаблон и сверлим реперные отверстия (сверлить их нужно строго перпендикулярно поверхности заготовки ПП):

Далее можно переходить к нанесению фоторезиста на поверхность заготовки ПП (накатке). Сразу скажу – для накатки я использую вот такой ламинатор (хотя по первому времени после ЛУТа юзал строго утюг):

Включаем его на прогрев (температуру я ставлю почти на максимум). И пока он греется, подготавливаем к накатке фоторезиста поверхность заготовки ПП. Сначала удаляем окислы меди и отпечатки пальцев различных людей с одной стороны заготовки (зашкуриваем поверхность «до зеркала»). Я это делаю на станке при помощи секретной приспособы из губки для очистки нагара:

(Примечание: для записи данного видео был привлечен другой «оператор». Ну и, соответственно, раскрылся он во всей красе:) Однако, сам процесс зашкуривания он вроде нормально заснял).

Затем обезжириваем зашкуренную сторону (я обезжириваю спиртом, делаю три прохода тряпками разной степени загрязненности):

Ну а теперь можно накатывать фоторезист. Берем одну из заготовок фоторезиста, изготовленных ранее. Первым делом необходимо снять с заготовки матовую защитную пленку. Для этого сначала ножницами срезаем наискось край угла заготовки. Много срезать не надо, достаточно 3-4мм в самом широком месте отрезанного куска.

На линии дополнительного среза отделяем от фоторезиста матовую пленку и немного (буквально на пару сантиметров) отводим ее от угла. Затем ее необходимо отвести на 1-2см вдоль всего узкого края заготовки из фоторезиста.

Берем матовую пленку за отогнутый край (примерно посередине) и медленно тянем ее к противоположному краю заготовки. После того, как матовая пленка будет полностью удалена, кладем заготовку ПП зашкуренной стороной вверх и накладываем на нее заготовку из фоторезиста светочувствительным слоем вниз.

Теперь нажимаем на середину той стороны, которую держали пальцами и проглаживаем пальцами эту сторону от центра к краям. Область проглаживания не должна заходить больше, чем на 1,5-2,0см от края заготовки. В процессе проглаживания светочувствительный слой за счет давления пальцев приклеится к фольге. Всё, положение заготовки из фоторезиста надежно зафиксировано на заготовке ПП:

Дальше сразу же несу полученный бутерброд к разогретому ламинатору. Говорю ламинатору, чтоб начал крутить прижимающие валы. Сую бутерброд в ламинатор той стороной, где фоторезист приклеен к фольге, и даю передним валам засосать бутер на 1,0-1,5см. Сразу после этого выключаю мотор ламинатора.

Беру пальцами левый свободный угол заготовки фоторезиста (это угол на стороне, которая еще не засосана валами) и поднимаю его немного вверх. Правой рукой снова включаю мотор ламинатора и ей же быстро подхватываю второй свободный угол фоторезиста, болтающийся в воздухе. После этого свободную сторону заготовки фоторезиста поднимаю вверх по максимуму (но без натяга, это важно!) и по мере прохода заготовки ПП через валы понемногу опускаю. Полностью отпускаю заготовку фоторезиста только тогда, когда вижу, что ламинатор намеревается сожрать мои пальцы.

После того, как фоторезист полностью накатан на заготовку ПП, прогоняю полученную «конструкцию» через ламинатор еще два-три раза.

На одну сторону заготовки ПП фоторезист накатан. Само собой, накатка на вторую сторону заготовки осуществляется аналогично. Но есть тут пара тонкостей.

Во-первых: шкурить нужно быстро или в темном помещении во избежание засветки накатанного фоторезиста (см. свойства фоторезиста). Во-вторых, при обезжиривании второй стороны заготовки ПП не нужно лить много спирта на тряпки. Лучше протереть поверхность лишний раз, если обезжириватель быстро испаряется с поверхности тряпки. Иначе он протечет через реперные отверстия на ту сторону заготовки, где накатан фоторезист, и если спирта слишком много – растворит довольно большие области светочувствительного слоя вокруг отверстий, вплоть до тех мест, где должен будет располагаться токопроводящий рисунок ПП. Ну и в-третьих (самых, наверное, важных) – перед накаткой фоторезиста на вторую сторону заготовки печатной платы необходимо проткнуть иголкой лавсановую пленку на первой стороне в местах расположения реперных отверстий. Иначе будет вот так:

Запоротый фоторезист вокруг отверстий в 9 случаях из 10 приходится дополнительно ретушировать. Так что – не будем усложнять себе жизнь. В остальном же накатка фоторезиста на вторую сторону заготовки ПП полностью повторяет процесс накатки на первую сторону.

Переходим к экспонированию фоторезиста. Совмещаю фотошаблоны, на которых нарисован токопроводящий рисунок ПП, с реперными отверстиями на заготовке ПП:

Приклеиваю шаблоны к заготовке узким канцелярским скотчем (пузыри и складки на скотче – уничтожить!). Затем тащу полученный бутерброд к установке для экспонирования:

Накрываю заготовку ПП стеклом (толщина 4мм), прижимаю стекло к столу грузами. А затем засвечиваю каждую сторону заготовки по 1мин. 45сек.:

О том, как примерно оценить оптимальное время засветки фоторезиста, есть отдельный раздел в бумажной заметке.

Теперь засвеченный фоторезист надо проявить. Готовим проявочный раствор (секретный рецепт – 2 чайных ложки кальцинированной соды на 0,5л теплой воды):

Температура воды: +35*С – +45*С. Надо трясти бутылку до тех пор, пока почти все комки соды не растворятся.

UPD: Было выяснено, что слишком большая концентрация кальцинированной соды в растворе, как ни странно, приводит к тому, что незакрепленный фоторезист в проявочном растворе толком не растворяется. Так что сыпать в воду килограммы соды не следует.

Далее включаем ламинатор на прогрев (температура печки – прежняя). А затем проявляем фоторезист. Наливаем в ванну для проявки полученный ранее чудо-раствор. Также бросаем в нее заранее приготовленный клочок ваты, чтоб отмокал (так с ним проще работать) и зубную щетку. Затем берем заготовку ПП с засвеченным фоторезистом и отклеиваем от нее фотошаблоны. Снимаем лавсановую пленку с поверхности фоторезиста. И погружаем заготовку ПП в ванну с раствором:

Трём поверхность заготовки ватой/щеткой до тех пор, пока практически весь незасвеченный фоторезист не будет смыт. Когда такой момент наступил, необходимо срочно мчаться промывать плату под струей проточной воды, а после промывки лучше промокнуть заготовку сухим полотенцем:

После промывки фоторезист нужно задубить, чтобы повысить его механическую прочность. И еще – чтобы он не отваливался от платы в процессе травления. Я «дублю» фоторезист, как многие считают, довольно своеобразно – просто тупо оборачиваю промытую и слегка влажную заготовку ПП листом писчей/офисной бумаги и прокатываю ее два-три раза через нагретый ламинатор (напомню, включать его на прогрев нужно до процесса проявки фоторезиста):

Температура печки ламинатора – такая же, как и при накатке фоторезиста. Всё, на этом процесс «дубления» завершен. Далее снимаем бумагу с заготовки ПП. И если вдруг оказывается, что бумага наглухо прилипла в некоторых местах к фоторезисту (речь о тех местах, где фоторезист должен быть закрепленным) – это явный признак того, что фоторезист недосвечен.

Можно начинать процесс травления. Перед удалением ненужной меди с заготовки ПП необходимо внимательно просмотреть проявленный рисунок токопроводящего слоя на предмет обрыва дорожек и наличия дырок в полигонах. Если таковые имеются, необходимо срочно замазать их перманентным маркером (заретушировать) или заляпать скотчем. Также неплохо бы поискать места с несмытым в процессе проявки фоторезистом. Если они найдутся – лучше процарапать данные области иголкой или канцелярским ножом. Конечно, есть весьма ненулевая вероятность вытравливания меди в этих зонах и без дополнительного процарапывания (особенно при использовании качественного и свежего травильного раствора), но, на мой взгляд – лишний раз рисковать ни к чему.

Травлю платы я водным раствором хлорного железа (железо/вода – 1,0/3,0 или 1,0/2,5). В качестве емкости (ванны) для травления использую «джакузи» – вертикальный аквариум с волшебными пузырьками, нагнетаемыми в жидкость через ПВХ трубку при помощи аквариумного компрессора:

Закидываю заготовку в травильный раствор и обычно иду курить. Процесс исчезновения ненужной меди контролирую каждые 5-6 минут. А когда видно, что до окончания травления осталось совсем немного – каждую минуту.

По окончании процесса травления плата приобретает вот такой вид:

Отмечу, что после вынимания из травильной ванны заготовку обязательно нужно промыть под струей проточной воды.

Всё, фоторезист на медной поверхности нам больше не нужен, поэтому его нужно как-то удалить. Я для этих целей использую ацетон и ванну, в которой проявлял фоторезист. Просто кладу заготовку ПП в ванну, заливаю ее ацетоном и жду, пока фоторезист не начнет сворачиваться калачиком. А потом легким движением руки сметаю отвалившийся фоторезист с обеих сторон заготовки ПП (прямо в ацетоне):

После того, как заготовка вынута из ацетона, протираю ее поверхность какой-нибудь плохонькой тряпкой.

Далее приступаю к сверлению отверстий. Уже более двух лет дырки в платах сверлит вместо меня станок, поэтому никаких фото/видео про сверловку я делать не хотел. Однако, мой кинооператор настоял на том, чтобы ролик с демонстрацией работы станка в заметке присутствовал. Ну и – хорошему человеку я отказать не смог:

UPD: Очень долго думал — чего ж мне покою-то не дает?:) Чего-то в заметке не хватало. Теперь дошло — раз уж выложил видео работы станка, то неплохо бы указать его модель. Я использую в работе станок EP-Q от конторы EVERPRECISION.

Здесь хотелось бы обратить внимание вот на что. На данном этапе сверловки я не использую свёрл с диаметром, превышающим 1,8мм. Т.е. сверлю, конечно, все отверстия, но не все – требуемого диаметра. Связано это с необходимостью последующего изготовления слоя паяльной маски (в моем случае – фоторезистивной). Дело в том, что при накатке фоторезиста на поверхность заготовки ПП с «большими» (т.е. с диаметром, превышающим 1,8-2,0мм) отверстиями после этих самых «больших» отверстий часто образуются нехеровые такие складки фоторезиста. Бывает, что вместе со складками возникают также пузыри. Думаю, связано это с тем, что фоторезист «проваливается» в «большие» отверстия. Для понимания причин возникновения складок можно накрыть стакан, поставленный дном вниз, полотенцем, а затем чуть вдавить полотенце внутрь стакана. Наверное, примерно то же самое происходит и с фоторезистом в «большом» отверстии, только тут есть еще и отягчающее обстоятельство – высокая температура печки ламинатора. Во избежание возникновения складок на паяльной маске и приходится сначала сверлить все отверстия тонкими сверлами, а после изготовления слоя маски (и, обычно, шелкографии) рассверливать некоторые из них до требуемого по проекту диаметра.

Просверленная заготовка ПП выглядит следующим образом:

Теперь (если есть необходимость) можно наносить паяльную маску. Я ее изготавливаю из фоторезиста. Сразу хочу предупредить – фоторезистивная маска не идет ни в какое сравнение с настоящей (которая «фирменная»). Цвет не тот, механическая прочность не та, растворяется ацетоном, да и вообще – на вид «совсем не то». Еще одним минусом фоторезистивной маски является неравномерность ее нанесения на плату и обгрызанные края практически всех участков маски:

Однако, мне для моих скромных потребностей фоторезистивной маски вполне хватает. Для меня в первую очередь важно, чтобы припой не растекался по полигонам и дорожкам. И в обычном режиме монтажа деталей маска из фоторезиста с этой задачей успешно справляется. Не знаю, конечно, как она отнесется к поверхностному монтажу элементов с использованием фена, ибо я юзаю в работе обычный паяльник.

Наверное, уже понятно, что процесс изготовления фоторезистивной маски практически ничем не отличается от нанесения рисунка токопроводящего слоя печатной платы на фольгу заготовки. И это действительно так, за исключением пары моментов.

Момент первый – для совмещения фотошаблона слоя маски с рисунком проводников совершенно необязательно использовать реперные точки. Я совмещаю шаблон с проводниками просто «на глаз», стараясь при этом минимизировать влияние кривизны фотошаблона на совпадение будущего рисунка маски и контактных площадок. И второй момент – при изготовлении фоторезистивной маски я сперва делаю слой маски на одной стороне заготовки ПП, и только затем – на другой (а не совмещаю накатку, проявку и дубление фоторезиста для обеих сторон сразу, как в случае нанесения токопроводящего рисунка). Потому что для нормального нанесения фоторезиста на обе стороны заготовки надо протыкать дырки в лавсане, а при их количестве, превышающем 50-100шт., это довольно утомительно.

В остальном же процесс изготовления фоторезистивной маски аналогичен процессу нанесения токопроводящего рисунка на фольгу заготовки ПП. Поскольку этот процесс был подробно описан ранее, для изготовления маски приведу лишь последовательность операций, которые необходимо будет произвести.

1. Выбираем какую-либо сторону заготовки ПП и зашкуриваем ее «до зеркала». Здесь необходимо контролировать степень выпирания краев отверстий. В идеале по окончании процесса зашкуривания должно быть на ощупь непонятно, где эти самые отверстия расположены (т.е., края отверстий не должны выпирать), иначе фоторезист в просверленных местах накатается плохо.

2. Обезжириваем зашкуренную поверхность.

3. Накатываем фоторезист на обезжиренную сторону заготовки ПП. Температура печки ламинатора – такая же, как при нанесении рисунка токопроводящего слоя на фольгу заготовки.

4. Накладываем фотошаблон слоя маски на накатанный фоторезист, совмещаем его с токопроводящим рисунком ПП.

5. Экспонируем фоторезист.

6. Проявляем проэкспонированный фоторезист (я использую для этого тот же проявочный раствор, что и для проявки токопроводящего рисунка ПП).

7. Дубим проявленный фоторезист. Я прокатываю заготовку ПП с проявленным фоторезистом через ламинатор три раза.

Маска для одной из сторон заготовки ПП изготовлена:

Далее повторяем действия, изложенные в пп.1-7 для другой стороны заготовки.

Теперь хотелось бы сказать несколько слов о шелкографии. Я делаю слой маркировки элементов при помощи тонера (технология – слегка модифицированный ЛУТ). И именно из-за применения этой технологии на сторону печатной платы, содержащую ярко выраженные неровности (в частности, дорожки и пады), шелкографию толком не нанесешь (в бумажной заметке объясняется – почему). Вместо относительно четкой маркировки будем иметь унылое говно:

Однако, сам по себе процесс изготовления шелкографии я всё же решил запечатлеть. Распечатываем слой шелкографии для какой-нибудь платы на офисной бумаге. Затем берем кусок одностороннего стеклотекстолита и приклеиваем к его стороне, не содержащей фольгу, распечатанный рисунок (тонером, разумеется, вниз). Я клею бумагу к текстолиту на два небольших куска двухстороннего скотча. А затем полученный бутерброд прогоняем дважды через ламинатор при постоянном воздействии затемнителя тонера:

Температура печки ламинатора – такая же, как для рисунка дорожек и для слоя маски. Второй раз бутер через ламинатор надо прогонять «обратной» стороной вперед, это важно (см. бумажную заметку). В результате примененного метода рисунок на поверхности стеклотекстолита выглядит так:

Ну и осталось только покрыть чем-то медь, чтоб не окислялась, рассверлить нужные отверстия, да обрезать платы по контуру. Для защиты меди от окислов я применяю канифольную пыль, растворенную в спирте. Берем кисточку, макаем ее в раствор канифоли и начинаем «лачить» плату:

А далее рассверливаем «большие» отверстия сверлом соответствующего диаметра и обрезаем платы по контуру. Я режу платы на гильотине:

После обрезки, возможно, нужно будет доработать границы каждой платы для придания им законченного вида. Я для того, чтобы края ПП не были острыми и/или с зазубринами всегда снимаю с границы печатной платы фаску губкой для очистки нагара или бархатным напильником. И наконец-то мы можем полюбоваться результатом своих трудов:

На этом процесс изготовления двухсторонней печатной платы завершен. Я надеюсь, что сполна выполнил свое обещание рассказать людям о «моем» процессе изготовления ПП. Ну а для тех, кому хочется узнать о данном процессе более подробно/полно, как уже говорил выше, существует бумажная заметка.

Ну а в целом – желаю всем удачи в процессе изготовления хороших печатных плат!

Примечание: все вопросы лучше валить в камменты после заметки, так как не факт, что я смогу на них на все ответить. А вот шансы на то, что в сообществе найдется более прошаренный человек по твоей теме — довольно хорошие. Но уж если зарегистрироваться на сайте совсем никак — можно воспользоваться возможностями электрической почты: [email protected]

Содержание архивов:

PCB_2Side_Hardware.zip (285кБ):
DM-LD0104x-01_ИЗМ_1.lay – файл изготавливаемой печатной платы (формат «Sprint Layout 5.0»).

PCB_2Side_Describe.zip (14МБ):
Изготовление_ПП_(2ст)_ПНФ-ВЩ_v1.0.pdf – бумажная заметка о изготовлении двухсторонней печатной платы с картинками и пояснениями к ним.

PCB_2Side_Video1.zip (112МБ):
1_Нарезка_ФР.avi – видео раскройки фоторезиста;
2_Затемнитель.avi – видео работы с затемнителем тонера;
3_Реперные.avi – видео разметки реперных отверстий;
4_Зашкуривание.avi – видео зашкуривания медной фольги заготовки ПП;
5_Обезжиривание.avi – видео обезжиривания зашкуренной поверхности;
6_Наложение.avi – видео наложения фоторезиста на поверхность заготовки ПП;
7_Накатка.avi – видео накатки фоторезиста на поверхность заготовки ПП;
8_Раствор.avi – видео приготовления проявочного раствора.

PCB_2Side_Video2.zip (154МБ):
9_Проявка.avi – видео проявки фоторезиста;
10_Промывка.avi – видео промывки проявленной заготовки;
11_Дубление.avi – видео дубления фоторезиста;
12_Ацетон.avi – видео сворачивания закрепленного фоторезиста в ацетоне;
13_Сверловка.avi – видео работы сверловочного станка;
14_Шелкография.avi – видео процесса нанесения слоя шелкографии на стеклотекстолит;
15_Флюс.avi – видео покрытия заготовки ПП защитным флюсом.

PCB_2Side_Video_Low.zip (67МБ):
Все видеоролики из данной заметки в очень ужасном качестве.

we.easyelectronics.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *