8-900-374-94-44
[email protected]
Slide Image
Меню

Из бп принтера – Блок питания старого принтера, как переделать его в регулируемый источник питания

Блок питания старого принтера, как переделать его в регулируемый источник питания



Многие люди при выходе из строя принтера недолго думая выкидывают на мусор. Но если разобрать старый неисправный принтер, то можно получить массу нужных деталей для самоделок. Добыть из принтера можно качественные металлические валы, штанги, направляющие, шаговые двигатели которые можно использовать в создании самодельного ЧПУ и тому подобных самоделках. В принтере есть разъемы USB, разнообразные датчики положения. Коллекторные электродвигатели используем для создания электросверлилок и для привода разнообразных моделей и игрушек и так далее.

В общем даем вторую жизнь старой оргтехнике.
Сейчас рассмотрим тему о переделке импульсного блока питания от принтера Canon и дальнейшем применении его в быту. В принтерах устанавливаются безтрансформаторные блоки питания построенные по импульсной схеме. Они могут выдавать напряжение от 24-х до 42-х Вольт с током нагрузки до 2 Ампер. Эти блоки питания довольно надежные, обладают большим ресурсом и могут проработать еще долгое время.

Перечень инструментов и материалов.
— импульсный блок питания от принтера Canon-1шт ;
-подстроечный многооборотный резистор на 5-10Ком -1шт;
-соединительные провода;
-паяльник;
-тестер;
-минивольтметр -1шт;
— клей;
— кусок алюминия листового;
— колпачок от тюбика;
-пластиковая трубка от стержня авторучки -1шт.


Шаг первый. Переделка схемы импульсного блока питания принтера.

Рассмотрим схему данного импульсного блока питания.

При штатном включении блока питания на выводе SB имеем напряжение 7 В, а на выводе +24 напряжение отсутствует. Если вам нужно нерегулируемое напряжение 24 В, то можно соединить между собой выходы SB и +24.

Наша задача состоит в том, чтобы регулировать управляемый стабилитрон TL431. На схеме он обозначен как IC51. Управляемый стабилитрон TL431 стабилизирует напряжение на выходе блока питания в зависимости от нагрузки так, как он включен в цепь обратной связи. Выпаиваем резистор R57 на плате.

Вместо него подключаем подстроечный многооборотный резистор номиналом от 5 до 10Ком.

Теперь нужное напряжение можно выставить вращением оси подстроечный резистор. Многооборотный подстроечный резистор дает более плавную регулировку выходного напряжения блока питания.

К выходу переделанного блока питания подключаем минивольтметр (в принципе можно подключить любой вольтметр, но просто мало места в штатном корпусе). На диодную сборку я поставил дополнительный радиатор из полоски аллюминия чтобы снизить нагрев на максимальных токах нагрузки. Также можно насверлить в корпусе вентиляционных отверстий.

Устанавливаем плату в родной штатный корпус(при желании можно разместить в более просторном корпусе, добавить выходные клеммы). В верхней крышке делаем окно для вольтметра и отверстие для подстроечного резистора. Сам подстроечник приклеиваем термоклеем. На поворотную ось резистора надеваем кусочек от пластмассового стержня(предварительно мажем клеем). На стержень приклеиваем колпачок от тюбика.

Шаг второй. Проверка работы блока питания.

После переделки получил пределы регулирования блока питания от 4,5 до 25 В. Подключил автомобильную лампу в качестве нагрузки. При напряжении 5,8В ток составил 1,22А. При напряжении 9,3 В ток составил 1,56А. При напряжении 24 В ток составил 2,2 А. Вполне приемлемый результат.



В результате небольшой переделки получили бесплатный компактный регулируемый источник питания. Его можно будет использовать в качестве зарядного устройства смартфонов, шуруповертов. Также питать светодиодные ленты, самоделок –все зависит от ваших потребностей.
Подробнее переделку и тест импульсного от принтера можно посмотреть в видео


Всем желаю здоровья и удачи в жизни и творчестве! Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Регулируемый источник питания блока питания струйного принтер Canon


Делаем своими руками регулируемый источник питания из блока питания принтера Canon.

Много  полезных деталей можно извлечь из старых матричных или струйных принтеров. Полированные валы, шаговые двигатели могут пригодиться для сборки небольшого ЧПУ, а так же для многих других самоделок. Блок питания принтера можно использовать для питания электроники, зарядного устройств и так далее. Электродвигатели можно применить для самоходных игрушек, изготовления минидрели (добавив патрон для установки сверла). Получаем также USB разъемы, всякие датчики и разнообразный крепеж.

 
В струйных принтерах применяются импульсные блоки питания, некоторые даже на два напряжения и с дежуркой. Напряжение на выходе от 24 до 42 вольт с током от 500мА до 2А. В общем, качественные блоки, далеко не ширпотреб, которые после несложной доработки смогут прослужить ещё не один год. Этот блок питания принтера Canon можно сделать регулируемым от 5 до 24 Вольт Напряжение на выходе этих блоков питания, можно регулировать в широком диапазоне – это самое простая доработка.

Схема блока питания


Нужно выпаять резистор R57 и на его место впаять подстроечный резистор на 5-10 Ком. В верхнюю крышку штатного корпуса БП добавляем вольтметр и  подстроечный резистор- все готово.


Переделанный блок питания можно применять в качестве мини лабораторника, зарядного устройства для смартфонов(добавить плату заряда ТР4056), зарядного для «шурика» (добавить плату заряда аккумуляторов CC CV  и получим регулирование по току )  и т.п.

Подробнее в видео

Категория: Радиолюбителю

Теги: Блоки питания

www.freeseller.ru

Как собрать лабораторный блок питания из принтера

В последние десятилетия электронная техника развивается настолько быстро, что аппаратура устаревает гораздо раньше, чем выходит из строя. Как правило, устаревшая аппаратура списывается и, попадая в руки радиолюбителей, становится источником радиодеталей.
Часть узлов этой аппаратуры вполне возможно использовать.


В один из визитов на радиорынок удалось практически за бесценок купить несколько печатных плат от списанной аппаратуры (рис. 1). В комплекте к одной из плат шел и трансформатор питания. После поисков в Интернете удалось установить (предположительно), что все платы — от матричных принтеров EPSON. Кроме множества полезных деталей, на плате смонтирован неплохой двухканальный источник питания. И если плату не предполагается использовать для других целей, на основе его можно построить регулируемый лабораторный блок питания. Как это сделать, рассказано ниже.

Источник питания содержит каналы +24 В и +5 В. Первый построен по схеме понижающего широтно-импульсного стабилизатора и рассчитан на ток нагрузки около 1,5 А. При превышении этого значения срабатывает защита и напряжение на выходе стабилизатора резко падает (ток короткого замыкания — примерно 0,35 А). Примерная нагрузочная характеристика канала показана на рис. 2 (кривая черного цвета). Канал +5В также построен по схеме импульсного стабилизатора но, в отличие от канала +24 В. по так называемой релейной схеме. Питается этот стабилизатор с выхода канала +24 В (рассчитан на работу от источника напряжения не ниже 15 В) и токовой защиты не имеет, поэтому при коротком замыкании выхода (а такое в практике радиолюбителя не редкость) может выйти из строя.

И хотя ток стабилизатора ограничен в канале +24 В, при коротком замыкании ключевой транзистор примерно за секунду нагревается до критической температуры. Схема стабилизатора напряжения +24В показана на рис. 3 (буквенные позиционные обозначения и нумерация элементов соответствуют нанесенным на печатной плате). Рассмотрим работу некоторых его узлов, имеющих особенности или отношение к переделке. На транзисторах Q1 и Q2 построен силовой ключ. Резистор R1 служит для уменьшения рассеиваемой мощности на транзисторе Q1. На транзисторе Q4 построен параметрический стабилизатор напряжения питания задающего генератора, выполненного на микросхеме, обозначенной на плате как ЗА (далее будем рассматривать её как DA1).

Схема лабораторного блока питания

Эта микросхема — полный аналог знаменитой по компьютерным блокам питания TL494 [1]. О её работе в различных режимах написано довольно много, поэтому рассмотрим лишь некоторые цепи. Стабилизация выходного напряжения осуществляется следующим образом: на один из входов встроенного компаратора 1 (вывод 2 DA1) через резистор R6 подается образцовое напряжение с внутреннего источника микросхемы (вывод 14). На другой вход (вывод 1) через резистивный делитель R16R12 поступает выходное напряжение стабилизатора, причём нижнее плечо делителя подключено к источнику образцового напряжения компаратора токовой защиты (вывод 15 DA1). Пока напряжение на выводе 1 DA1 меньше, чем на выводе 2, ключ на транзисторах Q1 и Q2 открыт.

Как только напряжение на выводе 1 становится больше, чем на выводе 2, ключ закрывается. Разумеется, процесс управления ключом определяется работой задающего генератора микросхемы. Токовая защита работает аналогично, за исключением того, что на ток нагрузки влияет выходное напряжение. Датчиком тока является резистор R2. Рассмотрим токовую защиту подробнее. Образцовое напряжение подаётся на инвертирующий вход компаратора 2 (вывод 15 DA1). В его формировании участвуют резисторы R7. R11, а также R16. R12. Пока ток нагрузки не превышает максимального значения, напряжение на выводе 15 DA1 определяется делителем R11R12R16.

Резистор R7 имеет довольно большое сопротивление и на образцовое напряжение почти не влияет. При перегрузке выходное напряжение резко падает. При этом уменьшается и образцовое напряжение, что вызывает дальнейшее снижение тока. Выходное напряжение снижается почти до нуля, и поскольку теперь последовательно соединённые резисторы R16, R12 через сопротивление нагрузки подключаются параллельно R11, образцовое напряжение, а следовательно, и выходной ток также резко уменьшаются. Так формируется нагрузочная характеристика стабилизатора +24 В.

Выходное напряжение на вторичной (II) обмотке понижающего трансформатора питания Т1 должно быть не ниже 29В при токе до 1,4 А. Стабилизатор напряжения +5В выполнен на транзисторе Об и интегральном стабилизаторе 78L05, обозначенном на плате как SR1. Описание аналогичного стабилизатора и его работы можно найти в [2]. Резисторы R31, R37 и конденсатор С26 образуют цепь ПОС для формирования крутых фронтов импульсов.
Для использования источника питания в лабораторном блоке нужно выпилить из печатной платы участок, на котором размещены детали стабилизаторов (на рис.1 отделён светлыми линиями).

Чтобы можно было регулировать выходное напряжение стабилизатора +24 В, его следует немного доработать. Для начала следует отсоединить вход стабилизатора +5 В, для чего необходимо выпаять резистор R18 и перерезать печатный проводник, идущий к выводу эмиттера транзистора Q6. Если источник +5 В не нужен, его детали можно удалить. Далее следует выпаять резистор R16 и подключить вместо него переменный резистор R16* (как и другие новые элементы, он изображён на схеме утолщёнными линиями) номинальным сопротивлением 68 кОм.

Затем надо выпаять резистор R12 и припаять его с обратной стороны платы между выводом 1 DA1 и минусовым выводом конденсатора С1. Теперь выходное напряжение блока можно изменять от 5 до 25 В. Понизить нижний предел регулирования примерно до 2В можно, если изменить пороговое напряжение на выводе 2 DA1. Для этого следует выпаять резистор R6, а напряжение на вывод 2 DA1 (около 2 В) подать с подстроечного резистора R6’ сопротивлением 100 кОм, как показано на схеме слева (напротив прежнего R6).

Этот резистор можно припаять со стороны деталей прямо к соответствующим выводам микросхемы. Есть и другой вариант — вместо резистора R6 впаять R6″ номиналом 100 кОм, а между выводом 2 микросхемы DA1 и общим проводом припаять ещё один резистор — R6″’ номиналом 36 кОм. После этих переделок следует изменить ток защиты стабилизатора. Выпаяв резистор R11, впаять на его место переменный R11* номинальным сопротивлением 3 кОм с включённым в цепь движка резистором R11″. Валик резистора R1 V можно вывести на лицевую панель для оперативной регулировки тока защиты (примерно от 30 мА до максимального значения, равного 1,5 А).

При таком включении изменится и нагрузочная характеристика стабилизатора: теперь при превышении тока нагрузки стабилизатор перейдёт в режим его ограничения (синяя линия на рис. 2). Если длина провода, соединяющего резистор R11′ с платой, превышает 100 мм, желательно параллельно ему на плате припаять конденсатор емкостью 0,01 мкФ. Также желательно снабдить транзистор Q1 небольшим теплоотводом. Вид на доработанную плату с регулировочными резисторами показан на рис. 4.

Такой блок питания можно эксплуатировать с нагрузкой, некритичной к пульсациям напряжения, которые при максимальном токе нагрузки могут превышать 100 мВ. Существенно понизить уровень пульсаций можно, добавив несложный компенсационный стабилизатор, схема которого представлена на рис. 5. В основе стабилизатора — широко распространенная микросхема TL431 (её отечественный аналог — КР142ЕН19). На транзисторах VT2 и VT3 построен регулирующий элемент. Резистор R4 здесь выполняет ту же функцию, что и R1 в импульсном стабилизаторе (см. рис. 3).

На транзисторе VT1 собран узел обратной связи по падению напряжения припаять со стороны деталей прямо к соответствующим выводам микросхемы. Есть и другой вариант — вместо резистора R6 впаять R6″ номиналом 100 кОм, а между выводом 2 микросхемы DA1 и общим проводом припаять ещё один резистор — R6″’ номиналом 36 кОм.

После этих переделок следует изменить ток защиты стабилизатора. Выпаяв резистор R11, впаять на его место переменный R11* номинальным сопротивлением 3 кОм с включённым в цепь движка резистором R11″. Валик резистора R1 V можно вывести на лицевую панель для оперативной регулировки тока защиты (примерно от 30 мА до максимального значения, равного 1,5 А). При таком включении изменится и нагрузочная характеристика стабилизатора: теперь при превышении тока нагрузки стабилизатор перейдёт в режим его ограничения (синяя линия на рис. 2). Если длина провода, соединяющего резистор R11′ с платой, превышает 100 мм, желательно параллельно ему на плате припаять конденсатор емкостью 0,01 мкФ. Также желательно снабдить транзистор Q1 небольшим теплоотводом. Вид на доработанную плату с регулировочными резисторами показан на рис. 4.

Такой блок питания можно эксплуатировать с нагрузкой, некритичной к пульсациям напряжения, которые при максимальном токе нагрузки могут превышать 100 мВ. Существенно понизить уровень пульсаций можно, добавив несложный компенсационный стабилизатор, схема которого представлена на рис. 5. В основе стабилизатора — широко распространенная микросхема TL431 (её отечественный аналог — КР142ЕН19). На транзисторах VT2 и VT3 построен регулирующий элемент. Резистор R4 здесь выполняет ту же функцию, что и R1 в импульсном стабилизаторе (см. рис. 3). На транзисторе VT1 собран узел обратной связи по падению напряжения на резисторе R2. Участок коллектор- эмиттер этого транзистора необходимо подключить вместо резистора R16 в схеме на рис. 3 (разумеется, переменный резистор R16’ в этом случае не нужен).

Работает этот узел следующим образом. Как только напряжение на резисторе R2 превысит примерно 0,6 В, транзистор VT1 открывается, что вызывает переключение компаратора микросхемы DA1 в импульсном стабилизаторе и, следовательно, закрывание ключа на транзисторах Q1,02. Выходное напряжение импульсного стабилизатора уменьшается. Таким образом, напряжение на этом резисторе поддерживается на уровне около 0,65 В. При этом падение напряжения на регулирующем элементе VT2VT3 равно сумме падения напряжения на резисторе R2 и напряжения на эмиттерном переходе транзистора VT3. т. е. около 1,25… 1,5В в зависимости от тока нагрузки.

В таком виде блок питания способен отдавать в нагрузку ток до 1,5А при напряжении до 24В, при этом уровень пульсаций не превышает нескольких милливольт. Следует отметить, что при срабатывании защиты по току уровень пульсаций увеличивается, поскольку микросхема DA1 компенсационного стабилизатора закрывается и регулирующий элемент открыт полностью.

Печатная плата для этого стабилизатора не разрабатывалась. Транзистор VT3 должен иметь статический коэффициент передачи тока Ь21Э не менее 300, а VT2 — не менее 100. Последний необходимо установить на теплоотвод с площадью охлаждающей поверхности не менее 10 см².
Налаживание блока питания с таким дополнением заключается в подборе резисторов выходного делителя R5— R7. При самовозбуждении блока можно шунтировать эмиттерный переход транзистора VJ1 конденсатором ёмкостью 0,047 мкФ. Несколько слов о стабилизаторе канала +5 В.

Его можно использовать как дополнительный источник, если в трансформаторе Т1 есть дополнительная обмотка на 16…22 В. В этом случае понадобится ещё один выпрямитель с фильтрующим конденсатором. Поскольку этот стабилизатор не имеет защиты, нагрузку к нему необходимо подключать через дополнительное устройство защиты, например, описанное в [3], ограничив ток последнего до 0.5 А. В статье описан простейший вариант переделки, но можно ещё улучшить характеристики источника, дополнив компенсационный стабилизатор собственной регулируемой защитой по току, например, на операционном усилителе, как это сделано в [4].


www.radiochipi.ru

Лабораторный блок питания из БП матричного принтера

Лабораторный блок питания из БП матричного принтера желательно иметь в любой домашней мастерской радиолюбителя, — это, конечно же, лабораторный блок питания. Название “лабораторный” подразумевает возможность регулирования его выходного напряжения в достаточно широких пределах, способность поддерживать установленное значение напряжения с достаточной для налаживаемой с его помощью аппаратуры точностью, наличие электронной защиты, способной при перегрузках или в аварийной ситуации предотвратить выход из строя как питаемого устройства, так и самого источника и т. д. Задача по изготовлению лабораторного блока упрощается, если в качестве основы использовать исправный источник питания какого-либо имеющегося бытового аппарата, уже отслужившего свой срок или морально устаревшего. В публикуемой ниже статье автор делится опытом изготовления лабораторного блока питания на основе стабилизатора напряжения матричного принтера.

В последние десятилетия электронная техника развивается настолько быстро, что аппаратура устаревает гораздо раньше, чем выходит из строя. Как правило, устаревшая аппаратура списывается и, попадая в руки радиолюбителей, становится источником радиодеталей. Часть узлов этой аппаратуры вполне возможно использовать.

В один из визитов на радиорынок удалось практически за бесценок купить несколько печатных плат от списанной аппаратуры (рис. 1).

В комплекте к одной из плат шёл и трансформатор питания. После поисков в Интернете удалось установить (предположительно), что все платы — от матричных принтеров EPSON. Кроме множества полезных деталей, на плате смонтирован неплохой двухканальный источник питания. И если плату не предполагается использовать для других целей, на основе его можно построить регулируемый лабораторный блок питания. Как это сделать, рассказано ниже.

Источник питания содержит каналы +24 В и +5 В. Первый построен по схеме понижающего широтно-импульсного стабилизатора и рассчитан на ток нагрузки около 1,5 А. При превышении этого значения срабатывает защита и напряжение на выходе стабилизатора резко падает (ток короткого замыкания — примерно 0,35 А). Примерная нагрузочная характеристика канала показана на рис. 2 (кривая чёрного цвета). Канал +5 В также построен по схеме импульсного стабилизатора но, в отличие от канала +24 В, по так называемой релейной схеме. Питается этот стабилизатор с выхода канала +24 В (рассчитан на работу от источника напряжения не ниже 15 В) и токовой защиты не имеет, поэтому при коротком замыкании выхода (а такое в практике радиолюбителя не редкость) может выйти из строя. И хотя ток стабилизатора ограничен в канале +24 В, при коротком замыкании ключевой транзистор примерно за секунду нагревается до критической температуры. Схема стабилизатора напряжения +24 В показана на рис. 3 (буквенные позиционные обозначения и нумерация элементов соответствуют нанесённым на печатной плате).

Рассмотрим работу некоторых его узлов, имеющих особенности или отношение к переделке. На транзисторах Q1 и Q2 построен силовой ключ. Резистор R1 служит для уменьшения рассеиваемой мощности на транзисторе Q1. На транзисторе Q4 построен параметрический стабилизатор напряжения питания задающего генератора, выполненного на микросхеме, обозначенной на плате как ЗА (далее будем рассматривать её как DA1). Эта микросхема — полный аналог знаменитой по компьютерным блокам питания TL494 . О её работе в различных режимах написано довольно много, поэтому рассмотрим лишь некоторые цепи. Стабилизация выходного напряжения осуществляется следующим образом: на один из входов встроенного компаратора 1 (вывод 2 DA1) через резистор R6 подаётся образцовое напряжение с внутреннего источника микросхемы (вывод 14). На другой вход (вывод 1) через резистивный делитель R16R12 поступает выходное напряжение стабилизатора, причём нижнее плечо делителя подключено к источнику образцового напряжения компаратора токовой защиты (вывод 15 DA1). Пока напряжение на выводе 1 DA1 меньше, чем на выводе 2, ключ на транзисторах Q1 и Q2 открыт. Как только напряжение на выводе 1 становится больше, чем на выводе 2, ключ закрывается. Разумеется, процесс управления ключом определяется работой задающего генератора микросхемы.

Токовая защита работает аналогично, за исключением того, что на ток нагрузки влияет выходное напряжение. Датчиком тока является резистор R2. Рассмотрим токовую защиту подробнее. Образцовое напряжение подаётся на инвертирующий вход компаратора 2 (вывод 15 DA1). В его формировании участвуют резисторы R7, R11, а также R16, R12. Пока ток нагрузки не превышает максимального значения, напряжение на выводе 15 DA1 определяется делителем R11R12R16. Резистор R7 имеет довольно большое сопротивление и на образцовое напряжение почти не влияет. При перегрузке выходное напряжение резко падает. При этом уменьшается и образцовое напряжение, что вызывает дальнейшее снижение тока. Выходное напряжение снижается почти до нуля, и поскольку теперь последовательно соединённые резисторы R16, R12 через сопротивление нагрузки подключаются параллельно R11, образцовое напряжение, а следовательно, и выходной ток также резко уменьшаются. Так формируется нагрузочная характеристика стабилизатора +24 В.

Выходное напряжение на вторичной (II) обмотке понижающего трансформатора питания Т1 должно быть не ниже 29 В при токе до 1,4 А. Стабилизатор напряжения +5 В выполнен на транзисторе Q6 и интегральном стабилизаторе 78L05, обозначенном на плате как SR1. Описание аналогичного стабилизатора и его работы можно найти в [2]. Резисторы R31, R37 и конденсатор С26 образуют цепь ПОС для формирования крутых фронтов импульсов.

Для использования источника питания в лабораторном блоке нужно выпилить из печатной платы участок, на котором размещены детали стабилизаторов (на рис. 1 отделён светлыми линиями). Чтобы можно было регулировать выходное напряжение стабилизатора +24 В, его следует немного доработать. Для начала следует отсоединить вход стабилизатора +5 В, для чего необходимо выпаять резистор R18 и перерезать печатный проводник, идущий к выводу эмиттера транзистора Q6. Если источник +5 В не нужен, его детали можно удалить. Далее следует выпаять резистор R16 и подключить вместо него переменный резистор R16’(как и другие новые элементы, он изображён на схеме утолщёнными линиями) номинальным сопротивлением 68 кОм. Затем надо выпаять резистор R12 и припаять его с обратной стороны платы между выводом 1 DA1 и минусовым выводом конденсатора С1. Теперь выходное напряжение блока можно изменять от 5 до 25 В.

Понизить нижний предел регулирования примерно до 2 В можно, если изменить пороговое напряжение на выводе 2 DA1. Для этого следует выпаять резистор R6, а напряжение на вывод 2 DA1 (около 2 В) подать с подстроечного резистора R6 сопротивлением 100 кОм, как показано на схеме слева (напротив прежнего R6). Этот резистор можно припаять со стороны деталей прямо к соответствующим выводам микросхемы. Есть и другой вариант — вместо резистора R6 впаять R6 номиналом 100 кОм, а между выводом 2 микросхемы DA1 и общим проводом припаять ещё один резистор — R6 номиналом 36 кОм. После этих переделок следует изменить ток защиты стабилизатора. Выпаяв резистор R11, впаять на его место переменный R11’ номинальным сопротивлением 3 кОм с включённым в цепь движка резистором R11″. Валик резистора R11′ можно вывести на лицевую панель для оперативной регулировки тока защиты (примерно от 30 мА до максимального значения, равного 1,5 А). При таком включении изменится и нагрузочная характеристика стабилизатора: теперь при превышении тока нагрузки стабилизатор перейдёт в режим его ограничения (синяя линия на рис. 2).

Если длина провода, соединяющего резистор R11  с платой, превышает 100 мм, желательно параллельно ему на плате припаять конденсатор ёмкостью 0,01 мкФ. Также желательно снабдить транзистор Q1 небольшим теплоотводом. Вид на доработанную плату с регулировочными резисторами показан на рис. 4.

Такой блок питания можно эксплуатировать с нагрузкой, некритичной к пульсациям напряжения, которые при максимальном токе нагрузки могут превышать 100 мВ. Существенно понизить уровень пульсаций можно, добавив несложный компенсационный стабилизатор, схема которого представлена на рис.

В основе стабилизатора — широко распространённая микросхема TL431 (её отечественный аналог — КР142ЕН19). На транзисторах VT2 и VT3 построен регулирующий элемент. Резистор R4 здесь выполняет ту же функцию, что и R1 в импульсном стабилизаторе (см. рис. 3). На транзисторе VT1 собран узел обратной связи по падению напряжения на резисторе R2. Участок коллектор-эмиттер этого транзистора необходимо подключить вместо резистора R16 в схеме на рис. (разумеется, переменный резистор R16’ в этом случае не нужен). Работает этот узел следующим образом.

Как только напряжение на резисторе R2 превысит примерно 0,6 В, транзистор VT1 открывается, что вызывает переключение компаратора микросхемы DA1 в импульсном стабилизаторе и, следовательно, закрывание ключа на транзисторах Q1, Q2. Выходное напряжение импульсного стабилизатора уменьшается. Таким образом, напряжение на этом резисторе поддерживается на уровне около 0,65 В. При этом падение напряжения на регулирующем элементе VT2VT3 равно сумме падения напряжения на резисторе R2 и напряжения на эмиттерном переходе транзистора VT3, т. е. около 1,25… 1,5 В в зависимости от тока нагрузки.

В таком виде блок питания

способен отдавать в нагрузку ток до 1,5 А при напряжении до 24 В, при этом уровень пульсаций не превышает нескольких милливольт. Следует отметить, что при срабатывании защиты по току уровень пульсаций увеличивается, поскольку микросхема DA1 компенсационного стабилизатора закрывается и регулирующий элемент открыт полностью. Печатная плата для этого стабилизатора не разрабатывалась. Транзистор VT3 должен иметь статический коэффициент передачи тока h313 не менее 300, а VT2 — не менее 100. Последний необходимо установить на теплоотвод с площадью охлаждающей поверхности не менее 10 см2.

Налаживание блока питания с таким дополнением заключается в подборе резисторов выходного делителя R5— R7. При самовозбуждении блока можно шунтировать эмиттерный переход транзистора VT1 конденсатором ёмкостью 0,047 мкФ. Несколько слов о стабилизаторе канала +5 В. Его можно использовать как дополнительный источник, если в трансформаторе Т1 есть дополнительная обмотка на 16…22 В. В этом случае понадобится ещё один выпрямитель с фильтрующим конденсатором. Поскольку этот стабилизатор не имеет защиты, нагрузку к нему необходимо подключать через дополнительное устройство защиты, например, описанное в, ограничив ток последнего до 0,5 А. В статье описан простейший вариант переделки, но можно ещё улучшить характеристики источника, дополнив компенсационный стабилизатор собственной регулируемой защитой по току.

vse-v-seti.ru

Лабораторный блок питания из БП матричного принтера

Прибор, наличие которого крайне желательно в любой домаш­ней мастерской радиолюбителя, — это, конечно же, лаборатор­ный блок питания. Названиелабораторный” подразумевает возможность регулирования его выходного напряжения в доста­точно широких пределах, способность поддерживать установ­ленное значение напряжения с достаточной для налаживаемой с его помощью аппаратуры точностью, наличие электронной защиты, способной при перегрузках или в аварийной ситуации предотвратить выход из строя как питаемого устройства, так и самого источника и т. д. Задача по изготовлению лабораторного блока упрощается, если в качестве основы использовать исправный источник питания какого-либо имеющегося бытового аппарата, уже отслужившего свой срок или морально устарев­шего. В публикуемой ниже статье автор делится опытом изго­товления лабораторного блока питания на основе стабилизатора напряжения матричного принтера.

 В последние десятилетия электрон­ная техника развивается настолько быстро, что аппаратура устаревает го­раздо раньше, чем выходит из строя. Как правило, устаревшая аппаратура списывается и, попадая в руки радиолюбителей, становится источником радиодеталей. Часть узлов этой аппаратуры вполне возможно использовать.

Рис. 1

В один из визитов на радиорынок удалось практически за бесценок купить несколько печатных плат от списанной аппаратуры (рис. 1). В комплекте к одной из плат шел и трансформатор пита­ния. После поисков в Интерне­те удалось установить (предположительно), что все пла­ты — от матричных принтеров EPSON. Кроме множества по­лезных деталей, на плате смонтирован неплохой двух­канальный источник питания. И если плату не предполагает­ся использовать для других целей, на основе его можно построить регулируе­мый лабораторный блок питания. Как это сделать, рассказано ниже.

Источник питания содержит каналы +24 В и +5 В. Первый построен по схеме понижающего широтно-импульсного стабилизатора и рассчитан на ток на­грузки около 1,5 А. При превышении это­го значения срабатывает защита и на­пряжение на выходе стабилизатора рез­ко падает (ток короткого замыкания — примерно 0,35 А). Примерная нагру­зочная характеристика канала показана на рис. 2 (кривая чёрного цвета). Канал +5 В также построен по схеме импульс­ного стабилизатора но, в отличие от канала +24 В, по так называемой релей­ной схеме. Питается этот стабилизатор с выхода канала +24 В (рассчитан на работу от источника напряжения не ниже 15 В) и токовой защиты не имеет, поэтому при коротком замыкании выхо­да (а такое в практике радиолюбителя не редкость) может выйти из строя. И хотя ток стабилизатора ограничен в канале +24 В, при коротком замыкании ключевой транзистор примерно за секунду нагревается до критической температуры.

Рис. 2

Схема стабилизатора напряжения +24 В показана на рис. 3 (буквенные позиционные обозначения и нумерация элементов соответствуют нанесённым на печатной плате). Рассмотрим работу некоторых его узлов, имеющих особен­ности или отношение к переделке. На транзисторах Q1 и Q2 построен силовой ключ. Резистор R1 служит для уменьше­ния рассеиваемой мощности на транзи­сторе Q1. На транзисторе Q4 построен параметрический стабилизатор напря­жения питания задающего генератора, выполненного на микросхеме, обозна­ченной на плате как ЗА (далее будем рассматривать ее как DA1). Эта микро­схема — полный аналог знаменитой по компьютерным блокам питания TL494 [1]. О ее работе в различных режимах написано довольно много, поэтому рас­смотрим лишь некоторые цепи.

Рис. 3

Стабилизация выходного напряже­ния осуществляется следующим обра­зом: на один из входов встроенного компаратора 1 (вывод 2 DА1) через резистор R6 подаётся образцовое на­пряжение с внутреннего источника мик­росхемы (вывод 14). На другой вход (вывод 1) через резистивный делитель R16R12 поступает выходное напряже­ние стабилизатора, причём нижнее плечо делителя подключено к источнику образцового напряжения компаратора токовой защиты (вывод 15 DA1). Пока напряжение на выводе 1 DA1 меньше, чем на выводе 2, ключ на транзисторах Q1 и Q2 открыт. Как только напряжение на выводе 1 становится больше, чем на выводе 2, ключ закрывается. Разумеется, процесс управления ключом опре­деляется работой задающего генерато­ра микросхемы.

Токовая защита работает аналогич­но, за исключением того, что на ток нагрузки влияет выходное напряжение. Датчиком тока является резистор R2. Рассмотрим токовую защиту подроб­нее. Образцовое напряжение подаётся на инвертирующий вход компаратора 2 (вывод 15 DA1). В его формировании участвуют резисторы R7, R11, а также R16, R12. Пока ток нагрузки не превы­шает максимального значения, напря­жение на выводе 15 DA1 определяется делителем R11R12R16. Резистор R7 имеет довольно большое сопротивле­ние и на образцовое напряжение почти не влияет. При перегрузке вы­ходное напряжение резко пада­ет. При этом уменьшается и образцовое напряжение, что вызы­вает дальнейшее снижение тока. Выходное напряжение снижа­ется почти до нуля, и поскольку теперь последовательно соеди­нённые резисторы R16, R12 че­рез сопротивление нагрузки подключаются параллельно R11, образцовое напряжение, а следовательно, и выходной ток так­же резко уменьшаются. Так фор­мируется нагрузочная характе­ристика стабилизатора +24 В.

Выходное напряжение на вто­ричной (II) обмотке понижающе­го трансформатора питания Т1 должно быть не ниже 29 В при токе до 1,4 А.

Стабилизатор напряжения +5 В выполнен на транзисторе Q6 и ин­тегральном стабилизаторе 78L05, обозначенном на плате как SR1. Описание аналогичного стабилизатора и его работы можно найти в [2]. Резисторы R31, R37 и конденсатор С26 образуют цепь ПОС для формирования крутых фронтов импульсов.
Для использования источника питания в лабораторном блоке нужно выпилить из печатной платы участок, на котором размещены детали стабилизаторов (на рис.1 отделён светлыми линиями). Чтобы можно было регулировать выходное напряжение стабилизатора +24 В, его следует немного доработать. Для начала следует отсоединить вход стабилизатора +5 В, для чего необходимо выпаять резистор R18 и перерезать печатный проводник, идущий к выводу эмиттера транзистора Q6. Если источник +5 В не нужен, его детали можно удалить. Далее следует выпаять резистор R16 и подключить вместо него переменный резистор R16(как и другие новые элементы, он изображён на схеме утолщёнными линиями) номинальным сопротивлением 68 кОм. Затем надо выпаять резистор R12 и припаять его с обратной стороны платы между выводом 1 DA1 и минусовым выводом конденсатора С1. Теперь выходное напряжение блока можно изменять от 5 до 25 В.
Понизить нижний предел регулирования примерно до 2В можно, если изменить пороговое напряжение на выводе 2 DA1. Для этого следует выпаять резистор R6, а напряжение на вывод 2 DA1 (около 2 В) подать с подстроечного резистора R6’ сопротивлением 100 кОм, как показано на схеме слева (напротив прежнего R6). Этот резистор можно припаять со стороны деталей прямо к соответствующим выводам микросхемы. Есть и другой вариант — вместо резистора R6 впаять R6″ номиналом 100 кОм, а между выводом 2 микросхемы DA1 и общим проводом припаять ещё один резистор — R6″’ номиналом 36 кОм.

После этих переделок следует изменить ток защиты стабилизатора. Выпаяв резистор R11, впаять на его место переменный R11 номинальным сопротивлением 3 кОм с включённым в цепь движка резистором R11″. Валик резистора R11 можно вывести на лицевую панель для оперативной регулировки тока защиты (примерно от 30 мА до максимального значения, равного 1,5 А). При таком включении изменится и нагрузочная характеристика стабилизатора: теперь при превышении тока нагрузки стабилизатор перейдёт в режим его ограничения (синяя линия на рис. 2). Если длина провода, соединяющего резистор R11′ с платой, превышает 100 мм, желательно параллельно ему на плате припаять конденсатор емкостью 0,01 мкФ. Также желательно снабдить транзистор Q1 небольшим теплоотводом. Вид на доработанную плату с регулировочными резисторами показан на рис. 4.

Рис. 4

Такой блок питания можно эксплуатировать с нагрузкой, некритичной к пульсациям напряжения, которые при максимальном токе нагрузки могут превышать 100 мВ.
Существенно понизить уровень пульсаций можно, добавив несложный компенсационный стабилизатор, схема которого представлена на рис. 5. В основе стабилизатора — широко распространенная микросхема TL431 (её отечественный аналог — КР142ЕН19). На транзисторах VT2 и VT3 построен регулирующий элемент. Резистор R4 здесь выполняет ту же функцию, что и R1 в импульсном стабилизаторе (см. рис. 3). На транзисторе VT1 собран узел обратной связи по падению напряжения припаять со стороны деталей прямо к соответствующим выводам микросхемы. Есть и другой вариант — вместо резистора R6 впаять R6″ номиналом 100 кОм, а между выводом 2 микросхемы DA1 и общим проводом припаять ещё один резистор — R6″’ номиналом 36 кОм.

После этих переделок следует изменить ток защиты стабилизатора. Выпаяв резистор R11, впаять на его место переменный R11* номинальным сопротивлением 3 кОм с включённым в цепь движка резистором R11*. Валик резистора R11 можно вывести на лицевую панель для оперативной регулировки тока защиты (примерно от 30 мА до максимального значения, равного 1,5 А). При таком включении изменится и нагрузочная характеристика стабилизатора: теперь при превышении тока нагрузки стабилизатор перейдёт в режим его ограничения (синяя линия на рис. 2). Если длина провода, соединяющего резистор R11′ с платой, превышает 100 мм, желательно параллельно ему на плате припаять конденсатор емкостью 0,01 мкФ. Также желательно снабдить транзистор Q1 небольшим теплоотводом. Вид на доработанную плату с регулировочными резисторами показан на рис. 4.

Такой блок питания можно эксплуатировать с нагрузкой, некритичной к пульсациям напряжения, которые при максимальном токе нагрузки могут превышать 100 мВ.
Существенно понизить уровень пульсаций можно, добавив несложный компенсационный стабилизатор, схема которого представлена на рис. 5. В основе стабилизатора — широко распространенная микросхема TL431 (её отечественный аналог — КР142ЕН19). На транзисторах VT2 и VT3 построен регулирующий элемент. Резистор R4 здесь выполняет ту же функцию, что и R1 в импульсном стабилизаторе (см. рис. 3). На транзисторе VT1 собран узел обратной связи по падению напряжения на резисторе R2. Участок коллектор- эмиттер этого транзистора необходимо подключить вместо резистора R16 в схеме на рис. 3 (разумеется, переменный резистор R16’ в этом случае не нужен). Работает этот узел следующим образом. Как только напряжение на резисторе R2 превысит примерно 0,6 В, транзистор VT1 открывается, что вызывает переключение компаратора микросхемы DA1 в импульсном стабилизаторе и, следовательно, закрывание ключа на транзисторах Q1, Q2. Выходное напряжение импульсного стабилизатора уменьшается. Таким образом, напряжение на этом резисторе поддерживается на уровне около 0,65 В. При этом падение напряжения на регулирующем элементе VT2VT3 равно сумме падения напряжения на резисторе R2 и напряжения на эмиттерном переходе транзистора VT3, т. е. около 1,25… 1,5В в зависимости от тока нагрузки.

Рис.5

В таком виде блок питания способен отдавать в нагрузку ток до 1,5А при напряжении до 24В, при этом уровень пульсаций не превышает нескольких милливольт. Следует отметить, что при срабатывании защиты по току уровень пульсаций увеличивается, поскольку микросхема DA1 компенсационного стабилизатора закрывается и регулирующий элемент открыт полностью.

Печатная плата для этого стабилизатора не разрабатывалась. Транзистор VT3 должен иметь статический коэффициент передачи тока h21Э не менее 300, а VT2 — не менее 100. Последний необходимо установить на теплоотвод с площадью охлаждающей поверхности не менее 10 см2.
Налаживание блока питания с таким дополнением заключается в подборе резисторов выходного делителя R5—R7. При самовозбуждении блока можно шунтировать эмиттерный переход транзистора VT 1 конденсатором ёмкостью 0,047 мкФ.
Несколько слов о стабилизаторе канала +5 В. Его можно использовать как дополнительный источник, если в трансформаторе Т1 есть дополнительная обмотка на 16…22 В. В этом случае понадобится ещё один выпрямитель с фильтрующим конденсатором. Поскольку этот стабилизатор не имеет защиты, нагрузку к нему необходимо подключать через дополнительное устройство защиты, например, описанное в [3], ограничив ток последнего до 0.5 А.
В статье описан простейший вариант переделки, но можно ещё улучшить характеристики источника, дополнив компенсационный стабилизатор собственной регулируемой защитой по току, например, на операционном усилителе, как это сделано в [4].

ЛИТЕРАТУРА

  1. Александров Р. Схемотехника блоков питания персональных компьюте­ров. — Радио, 2002, № 6, с. 22, 23.
  2. Щербина А., Благий С., Иванов В.
  3. Применение микросхемных стабилизаторов серий 142, К142, КР142. — Радио, 1991, № 5, с. 68-70.
  4. Александров И. Электронный предохранитель. — Радио, 2000, № 2, с. 54.
  5. Высочанский П. Простой лаборатор­ный блок питания 1…20В с регулируемой токовой защитой. — Радио, 2006, № 9, с. 37.

Автор: Е. ГЕРАСИМОВ, ст. Выселки Краснодарского края
Источник: Радио №7/2016

Возможно, вам это будет интересно:

meandr.org

Блок питания для принтера: HP, EPSON, CANON

Все модели принтеров могут выйти из строя. Но наиболее часто замене подвергаются блоки питания. Можно ли их заменить самостоятельно и как это сделать? Если пользователь разбирается в электричестве, то заменить деталь не составит труда. Новичкам в таком деле, все же рекомендуется нести прибор специалисту. Ведь до самого процесса замены, блок необходимо правильно выбрать. Не подходящая деталь к имеющемуся оборудованию либо не подойдет совсем, либо окончательно приведет его в негодность.

Блок питания (сетевой адаптер)

Рекомендуется сделать фото блока перед тем, как приобретать новый. Так легче объяснить продавцу, какой элемент необходим. Разберем блоки питания для принтеров EPSON, HP и CANON, а также, их схемы и возможности переделок.

Прежде чем заняться решением проблемы с ремонтом, необходимо узнать о некоторых правилах безопасности. Так как работать придется с повышенным источником опасности.

  1. Важно знать, что схема любого блока находится под большим напряжением. Обычно на плате детали этот момент выделен пунктиром. Под напряжением находятся и другие детали схемы.
  2. Электролитические конденсаторы в сетевом выпрямителе подлежат разряжению. После выключения можно просто выждать некоторое время для этого. Примерно, минуту.
  3. Заранее оборудовать рабочее место. Должна быть возможность быстрого отсоединения детали от электричества в случае внештатной ситуации.

Блок Питания Posiflex 24V для принтера

Как найти и устранить неполадки в блоке

Иногда неполадки в схеме путают с неисправностями в БП (блоке питания). Чтобы не ошибиться нужна точная диагностика. Необходимо осмотреть корпус трансформатора и резистора. Убедиться в их целостности. На их поверхностях могут быть трещины, сколы или копоть. На корпусе трансформатора иногда присутствует выпуклость. Он как бы вздувается.

Схема блока питания

В имеющиеся трещины может попасть электролит. Он приведет в негодность находящиеся рядом детали, если не выявить проблему своевременно. Поврежденные элементы нужно заменить. Копоть, электролит и другие загрязнения тщательно очистить. Промыть специальным раствором.

Важно осмотреть плату, которая осуществляет распечатку. На ней могут быть повреждены дорожки. Либо пайки элементов выполнены не качественно. Все дефекты следует устранить. Если неисправен транзистор, надо осмотреть все находящиеся рядом детали. При их неисправностях следует разобрать систему и вынуть поврежденные детали. Заменить на целые.

Следует проверить вторичные цепи. Может быть произошел обрыв либо замыкание в диодной сборке. На замененных элементах осмотреть пайку. После проведения ремонтных работ, важна предварительная проверка. Агрегат подключают к сети и осматривают еще раз.

Запчасти блока принтера

Как найти и устранить неисправности в схеме термозакрепления

Схема блоков питания для принтеров имеет важное значение. Независимо от модели, Canon, Epson или HP, оборудование не будет функционировать без исправной схемы. К сожалению, это очень частая поломка в принтерах. Поломка семистора может быть причиной проблемы. Важно проверить, не произошло ли в нем замыкание. С помощью омметра проводят диагностику, не извлекая деталь из платы.

Переделка блока питания

Если сработал термо предохранитель в нагревательном элементе, проверке подлежат детали, защищающие от перегрева принтера. Все неисправные составляющие заменяются новыми.

Как переделать блок питания на принтере

Переделка блока питания для принтера бывает необходима, если старый не совпадает по параметрам с самим оборудованием. Рассмотрим на примере блок питания для принтера Canon.

Чтобы осуществить переделку нужен сам блок и еще несколько инструментов:

  • Паяльник;
  • лобзик электрический;
  • гнезда;
  • тумблеры;
  • лампочки с патронами;
  • предохранители с держателями;
  • зажимы;
  • дрель.

Адаптер блок питания для принтера HP

Блок питания для модели Эпсон тоже подходит под эту схему переделки. Работа заключается в следующем:

  1. Используя прочный материал для изоляции, надо вырезать панель. В ней просверлить отверстия для прикрепления. Блок питания важно обесточить. Разъемы отрезать от проводов, которые находятся в блоке.
  2. Зеленый проводок подпаять к любому из контактов. Черный — к другому контакту.
  3. Ввернуть патрон и вставить в него лампочку.
  4. Выходные зажимы расположить спереди на панели. В первом ряду желтые проводки. Во втором — красные, в третьем — оранжевые. В четвертом — оставшиеся черные. К каждому зажиму припаять один провод, соответствующий по цвету.
  5. Держатели предохранителей установить в соответствии с числом оранжевых проводков.
  6. Закрепить панель так, чтобы вентиляционные отверстия не закрылись. Выключатель на блоке и тумблер отключить. Подключить к сетевому источнику, обязательно заземленному!

Блок питания для принтера HP тоже иногда переделывают. Здесь необходимо хорошо разбираться в схеме. Изучить ее наглядно до начала переделки. Если в инструкции нет фото, его можно найти в интернете. Важно изучить все составляющие элементы схемы, соответствие проводов и т. д.

Блок питания для принтера HP

Чтобы не случалось подобных неполадок с блоком питания, важна грамотная эксплуатация оборудования. Нельзя долгое время оставлять блок подключенным к сети, перегрев приведет к сгоранию агрегата. Если деталь сильно нагревается даже за короткое время, следует разобрать ее и проверить все составляющие детали.

printergid.ru

Лабораторный блок питания из БП матричного принтера

Электропитание

Главная  Радиолюбителю  Электропитание



Прибор, наличие которого крайне желательно в любой домашней мастерской радиолюбителя, — это, конечно же, лабораторный блок питания. Название «лабораторный» подразумевает возможность регулирования его выходного напряжения в достаточно широких пределах, способность поддерживать установленное значение напряжения с достаточной для налаживаемой с его помощью аппаратуры точностью, наличие электронной защиты, способной при перегрузках или в аварийной ситуации предотвратить выход из строя как питаемого устройства, так и самого источника и т. д. Задача по изготовлению лабораторного блока упрощается, если в качестве основы использовать исправный источник питания какого-либо имеющегося бытового аппарата, уже отслужившего свой срок или морально устаревшего. В публикуемой ниже статье автор делится опытом изготовления лабораторного блока питания на основе стабилизатора напряжения матричного принтера.

В последние десятилетия электронная техника развивается настолько быстро, что аппаратура устаревает гораздо раньше, чем выходит из строя. Как правило, устаревшая аппаратура списывается и, попадая в руки радиолюбителей, становится источником радиодеталей.

Часть узлов этой аппаратуры вполне возможно использовать.

В один из визитов на радиорынок удалось практически за бесценок купить несколько печатных плат от списанной аппаратуры (рис. 1).

Рис. 1. Печатные плата от списанной аппаратуры

В комплекте к одной из плат шёл и трансформатор питания. После поисков в Интернете удалось установить (предположительно), что все платы — от матричных принтеров EPSON. Кроме множества полезных деталей, на плате смонтирован неплохой двухканальный источник питания.

И если плату не предполагается использовать для других целей, на основе его можно построить регулируемый лабораторный блок питания. Как это сделать, рассказано ниже.

Источник питания содержит каналы +24 В и +5 В. Первый построен по схеме понижающего широтно-импульсного стабилизатора и рассчитан на ток нагрузки около 1,5 А. При превышении этого значения срабатывает защита и напряжение на выходе стабилизатора резко падает (ток короткого замыкания — примерно 0,35 А). Примерная нагрузочная характеристика канала показана на рис. 2 (кривая чёрного цвета). Канал +5 В также построен по схеме импульсного стабилизатора но, в отличие от канала +24 В, по так называемой релейной схеме. Питается этот стабилизатор с выхода канала +24 В (рассчитан на работу от источника напряжения не ниже 15 В) и токовой защиты не имеет, поэтому при коротком замыкании выхода (а такое в практике радиолюбителя не редкость) может выйти из строя. И хотя ток стабилизатора ограничен в канале +24 В, при коротком замыкании ключевой транзистор примерно за секунду нагревается до критической температуры.

Рис. 2. Нагрузочная характеристика канала

Рис. 3. Схема стабилизатора напряжения

Схема стабилизатора напряжения +24 В показана на рис. 3 (буквенные позиционные обозначения и нумерация элементов соответствуют нанесённым на печатной плате). Рассмотрим работу некоторых его узлов, имеющих особенности или отношение к переделке. На транзисторах Q1 и Q2 построен силовой ключ. Резистор R1 служит для уменьшения рассеиваемой мощности на транзисторе Q1. На транзисторе Q4 построен параметрический стабилизатор напряжения питания задающего генератора, выполненного на микросхеме, обозначенной на плате как 3А (далее будем рассматривать её как DA1). Эта микросхема — полный аналог знаменитой по компьютерным блокам питания TL494 [1]. О её работе в различных режимах написано довольно много, поэтому рассмотрим лишь некоторые цепи.

Стабилизация выходного напряжения осуществляется следующим образом: на один из входов встроенного компаратора 1 (вывод 2 DA1) через резистор R6 подаётся образцовое напряжение с внутреннего источника микросхемы (вывод 14). На другой вход (вывод 1) через резистивный делитель R16R12 поступает выходное напряжение стабилизатора, причём нижнее плечо делителя подключено к источнику образцового напряжения компаратора токовой защиты (вывод 15 DA1). Пока напряжение на выводе 1 DA1 меньше, чем на выводе 2, ключ на транзисторах Q1 и Q2 открыт. Как только напряжение на выводе 1 становится больше, чем на выводе 2, ключ закрывается. Разумеется, процесс управления ключом определяется работой задающего генератора микросхемы.

Токовая защита работает аналогично, за исключением того, что на ток нагрузки влияет выходное напряжение. Датчиком тока является резистор R2. Рассмотрим токовую защиту подробнее. Образцовое напряжение подаётся на инвертирующий вход компаратора 2 (вывод 15 DA1). В его формировании участвуют резисторы R7, R11, а также R16, R12. Пока ток нагрузки не превышает максимального значения, напряжение на выводе 15 DA1 определяется делителем R11R12R16. Резистор R7 имеет довольно большое сопротивление и на образцовое напряжение почти не влияет. При перегрузке выходное напряжение резко падает. При этом уменьшается и образцовое напряжение, что вызывает дальнейшее снижение тока. Выходное напряжение снижается почти до нуля, и поскольку теперь последовательно соединённые резисторы R16, R12 через сопротивление нагрузки подключаются параллельно R11, образцовое напряжение, а следовательно, и выходной ток также резко уменьшаются. Так формируется нагрузочная характеристика стабилизатора +24 В.

Выходное напряжение на вторичной (II) обмотке понижающего трансформатора питания T1 должно быть не ниже 29 В при токе до 1,4 А.

Стабилизатор напряжения +5 В выполнен на транзисторе Q6 и интегральном стабилизаторе 78L05, обозначенном на плате как SR1. Описание аналогичного стабилизатора и его работы можно найти в [2]. Резисторы R31, R37 и конденсатор С26 образуют цепь ПОС для формирования крутых фронтов импульсов.

Для использования источника питания в лабораторном блоке нужно выпилить из печатной платы участок, на котором размещены детали стабилизаторов (на рис. 1 отделён светлыми линиями). Чтобы можно было регулировать выходное напряжение стабилизатора +24 В, его следует немного доработать. Для начала следует отсоединить вход стабилизатора +5 В, для чего необходимо выпаять резистор R18 и перерезать печатный проводник, идущий к выводу эмиттера транзистора Q6. Если источник +5 В не нужен, его детали можно удалить. Далее следует выпаять резистор R16 и подключить вместо него переменный резистор R16′ (как и другие новые элементы, он изображён на схеме утолщёнными линиями) номинальным сопротивлением 68 кОм.

Затем надо выпаять резистор R12 и припаять его с обратной стороны платы между выводом 1 DA1 и минусовым выводом конденсатора С1. Теперь выходное напряжение блока можно изменять от 5 до 25 В.

Понизить нижний предел регулирования примерно до 2 В можно, если изменить пороговое напряжение навыводе 2 DA1. Для этого следует выпаять резистор R6, а напряжение на вывод 2 DA1 (около 2 В) подать с подстроечного резистора R6′ сопротивлением 100 кОм, как показано на схеме слева (напротив прежнего R6). Этот резистор можно припаять со стороны деталей прямо к соответствующим выводам микросхемы. Есть и другой вариант — вместо резистора R6 впаять R6» номиналом 100 кОм, а между выводом 2 микросхемы DA1 и общим проводом припаять ещё один резистор — R6»’ номиналом 36 кОм.

После этих переделок следует изменить ток защиты стабилизатора. Выпаяв резистор R11, впаять на его место переменный R11′ номинальным сопротивлением 3 кОм с включённым в цепь движка резистором R11». Валик резистора R11′ можно вывести на лицевую панель для оперативной регулировки тока защиты (примерно от 30 мА до максимального значения, равного 1,5 А). При таком включении изменится и нагрузочная характеристика стабилизатора: теперь при превышении тока нагрузки стабилизатор перейдёт в режим его ограничения (синяя линия на рис. 2). Если длина провода, соединяющего резистор R11′ с платой, превышает 100 мм, желательно параллельно ему на плате припаять конденсатор ёмкостью 0,01 мкФ. Также желательно снабдить транзистор Q1 небольшим теплоотводом. Вид на доработанную плату с регулировочными резисторами показан на рис. 4.

Рис. 4. Вид на доработанную плату с регулировочными резисторами

Такой блок питания можно эксплуатировать с нагрузкой, некритичной к пульсациям напряжения, которые при максимальном токе нагрузки могут превышать 100 мВ.

Существенно понизить уровень пульсаций можно, добавив несложный компенсационный стабилизатор, схема которого представлена на рис. 5. В основе стабилизатора — широко распространённая микросхема TL431 (её отечественный аналог — КР142ЕН19). На транзисторах VT2 и VT3 построен регулирующий элемент. Резистор R4 здесь выполняет ту же функцию, что и R1 в импульсном стабилизаторе (см. рис. 3). На транзисторе VT1 собран узел обратной связи по падению напряжения на резисторе R2. Участок коллектор-эмиттер этого транзистора необходимо подключить вместо резистора R16 в схеме на рис. 3 (разумеется, переменный резистор r16′ в этом случае не нужен). Работает этот узел следующим образом. Как только напряжение на резисторе R2 превысит примерно 0,6 В, транзистор VT1 открывается, что вызывает переключение компаратора -микросхемы DA1 в импульсном стабилизаторе и, следовательно, закрывание ключа на транзисторах Q1, Q2. Выходное напряжение импульсного стабилизатора уменьшается. Таким образом, напряжение на этом резисторе поддерживается на уровне около 0,65 В. При этом падение напряжения на регулирующем элементе VT2VT3 равно сумме падения напряжения на резисторе R2 и напряжения на эмиттерном переходе транзистора VT3, т. е. около 1,25… 1,5 В в зависимости от тока нагрузки.

Рис. 5. Схема компенсационного стабилизатора

В таком виде блок питания способен отдавать в нагрузку ток до 1,5 А при напряжении до 24 В, при этом уровень пульсаций не превышает нескольких милливольт. Следует отметить, что при срабатывании защиты по току уровень пульсаций увеличивается, поскольку микросхема DA1 компенсационного стабилизатора закрывается и регулирующий элемент открыт полностью.

Печатная плата для этого стабилизатора не разрабатывалась. Транзистор VT3 должен иметь статический коэффициент передачи тока h21Э не менее 300, а VT2 — не менее 100. Последний необходимо установить на теплоотвод с площадью охлаждающей поверхности не менее 10 см2.

Налаживание блока питания c таким дополнением заключается в подборе резисторов выходного делителя R5-R7. При самовозбуждении блока можно шунтировать эмиттерный переход транзистора VT1 конденсатором ёмкостью 0,047 мкФ.

Несколько слов о стабилизаторе канала +5 В. Его можно использовать как дополнительный источник, если в трансформаторе Т1 есть дополнительная обмотка на 16…22 В. В этом случае понадобится ещё один выпрямитель с фильтрующим конденсатором. Поскольку этот стабилизатор не имеет защиты, нагрузку к нему необходимо подключать через дополнительное устройство защиты, например, описанное в [3], ограничив ток последнего до 0,5 А.

В статье описан простейший вариант переделки, но можно ещё улучшить характеристики источника, дополнив компенсационный стабилизатор собственной регулируемой защитой по току, например, на операционном усилителе, как это сделано в [4].

Литература

1. Александров Р. Схемотехника блоков питания персональных компьютеров. — Радио, 2002, № 6, с. 22, 23.

2. Щербина А., Благий С., Иванов В. Применение микросхемных стабилизаторов серий 142, К142, КР142. — Радио, 1991, № 5, с. 68-70.

3. Александров И. Электронный предохранитель. — Радио, 2000, № 2, с. 54.

4. Высочанский П. Простой лабораторный блок питания 1.20 В с регулируемой токовой защитой. — Радио, 2006, № 9, с. 37.

Автор: Е. Герасимов, ст. Выселки Краснодарского края

Дата публикации: 01.10.2016

Мнения читателей

Нет комментариев. Ваш комментарий будет первый.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:


www.radioradar.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *